DOI QR코드

DOI QR Code

A Comprehensive Performance Evaluation in Collaborative Filtering

협업필터링에서 포괄적 성능평가 모델

  • Yu, Seok-Jong (Dept. of Computer Science, Sookmyung Women's University)
  • 유석종 (숙명여자대학교 컴퓨터과학부)
  • Received : 2011.12.08
  • Accepted : 2012.02.10
  • Published : 2012.04.30

Abstract

In e-commerce systems that deal with a large number of items, the function of personalized recommendation is essential. Collaborative filtering that is a successful recommendation algorithm, suffers from the sparsity, cold-start, and scalability restrictions. Additionally, this work raises a new flaw of the algorithm, inconsistent performance of recommendation. This is also not measurable by the current MAE-based evaluation that does not consider the deviation of prediction error, and furthermore is performed independently of precision and recall measurement. To evaluate the collaborative filtering comprehensively, this work proposes an extended evaluation model that includes the current criteria such as MAE, Precision, Recall, deviation, and applies it to cluster-based combined collaborative filtering.

대규모의 상품을 다루는 전자상거래 시스템에서 개인화된 추천은 필수적인 기능이 되고 있다. 대표적 추천 알고리즘인 협업필터링은 내용기반 추천에 비하여 뛰어난 추천성능을 제공해 주고 있으나, 희박성, 신규 아이템 문제(Cold-start), 확장성 등의 근본적인 한계를 갖고 있다. 본 연구에서는 추가적으로 협업필터링이 목표 대상자에 따라 비일관된 예측 능력의 차이를 보이는 추천 성능의 편차 문제를 제기하고자 한다. 추천성능의 편차는 기존의 Mean Absolute Error(MAE)에 의해서는 측정되기 어려우며 또한 정확도, 재현율 지표와도 독립적으로 평가되고 있다. 협업알고리즘의 정확한 성능평가를 위해서 본 연구에서는 MAE, MAE 편차, 정확도, 재현율을 포괄적으로 평가할 수 있는 확장 성능평가모델을 제안하고 이를 클러스터링 기반 협업필터링에 적용하여 성능을 비교 분석한다.

Keywords

References

  1. J. Konstan, D. B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl, "GroupLens: Applying collaborative filtering to Usenet news," Communications of ACM, Vol. 40, No. 3, pp. 77-87, 1997. https://doi.org/10.1145/245108.245126
  2. M. Pazzani, "A Framework for Collaborative, Content-Based, and Demographic Filtering," Artificial Intelligence Review, pp. 393-408, Dec 1999.
  3. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithm," Proc. of the 10th international conference on World Wide Web, pp. 285-295, 2001.
  4. A. Ferman, J. Errico, P. Beek, and M. Sezan, "Content-based Filtering and Personalization Using Structural Metadata," Proc. of the 2nd ACM/IEEE-CS Joint Conference on Digital libraries, NY, USA, pp. 393-393, 2002.
  5. H. Kwak,C. Lee,H. Park, and S. Moon, "What is Twitter, a Social Network or a News Media?," Proc. the 19th International World Wide Web Conference, April 26-30, Raleigh NC USA, pp. 591-600, 2010.
  6. H. Liu and P. Maes, "InterestMap: Harvesting Social Network Profiles for Recommendations," Proc. of the Beyond Personalization Workshop, San Diego, California, pp. 54-49, 2005.
  7. M. O. Connor and J. Herlocker, "Clustering Items for Collaborative Filtering," Proc. of the ACM SIGIR Workshop on Recommender Systems, Berkeley, CA, 1999.
  8. C. Ding and X. He, "K-Means Clustering via Principal Component Analysis," Proc. of the 21th Int. Conf. on Machine Learning, pp. 225-232, 2004.
  9. P. Melville, R. J. Mooney, and R. Nagarajan, "Content-Boosted Collaborative Filtering for Improved Recommendations," Proc. of the Eighteenth National Conference on Artificial Intelligence, Edmonton, Canada, pp. 187-192, July 2002.
  10. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering," Proc. of 22nd Annual International ACM SIGIR Conference, Research and Development in Information Retrieval, 1999.
  11. G. Groh and C. Ehmig, "Recommendations in Taste Related Domains: Collaborative filtering vs. Social filtering," Proc. of GROUP'07, pp. 127-136, 2007.
  12. M. Balabanovic and Y. Shoham, "Fab: Content-Based, Collaborative Recommendation," Communications of the ACM, Vol. 40, No. 3, pp. 66-72, 1997. https://doi.org/10.1145/245108.245124
  13. Y. Yang and J. Li, "Interest-based Recommendation in Digital Library," Journal of Computer Science, Vol. 1, No. 1, pp. 40-46, 2005. https://doi.org/10.3844/jcssp.2005.40.46
  14. J. L. Herlocker, J. A. Konstan, and J. T. Riedl, "An Empirical Analysis of Design Choices in Neighborhood-based Collaborative Filtering Systems," Information Retrieval, Vol. 5, pp. 287-310, 2002. https://doi.org/10.1023/A:1020443909834
  15. Z. Huang, H. Chen, and D. Zeng, "Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering," ACM Trans. Information Systems, Vol. 22, No. 1, pp. 116- 142, 2004. https://doi.org/10.1145/963770.963775
  16. S. Brin, "Near Neighbor Search in Large Metric Spaces," Proc. of the 21th International Conference on Very Large DataBases, pp. 574-584, 1995.
  17. F. Zhang, H. Liu, and J. Chao, "A Two-stage Recommendation Algorithm Based on K-means Clustering In Mobile E-commerce," Journal of Computational Information Systems, Vol. 6, No. 10, pp. 3327-3334, 2010.
  18. S. Gong, "A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item Clustering," Journal of Software, Vol. 5, No. 7, July 2010.
  19. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, "Evaluating Collaborative Filtering Recommender Systems," ACM Transactions on Information Systems, Vol. 22, No. 1, pp. 5-53, January 200. https://doi.org/10.1145/963770.963772
  20. T. Kim, S. Park, and S. Yang, "Improving Prediction Quality in Collaborative Filtering based on Clustering," Proc. of 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 704-710, 2008.

Cited by

  1. Predicting Plant Biological Environment Using Intelligent IoT vol.19, pp.7, 2018, https://doi.org/10.9728/dcs.2018.19.7.1423
  2. 사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템 vol.18, pp.2, 2012, https://doi.org/10.9708/jksci.2013.18.2.107