DOI QR코드

DOI QR Code

Detection of Gradual Scene Boundaries with Linear and Circular Moving Borders

선형 및 원형의 이동경계선을 가지는 점진적 장면경계 추출

  • 장석우 (안양대학교 디지털미디어학과) ;
  • 조성윤 (안양대학교 디지털미디어학과)
  • Received : 2011.11.28
  • Accepted : 2012.01.08
  • Published : 2012.04.30

Abstract

This paper proposes a detection method of wipes including horizontal wipes with linear moving borders, such as horizontal or vertical wipes, Barn Doors, and Iris Rounds with circular moving borders. The suggested method first obtains a difference image between two adjacent frames, and extracts lines and circles by applying Hough transformation to the extracted difference image. Then, we detect wipe transitions by employing an evaluation function that analyzes the number of moving trajectories of lines or circles, their moving direction and magnitude. To evaluate the performance of the suggested algorithm, experimental results show that the proposed method can effectively detect wipe transitions with linear and circular moving borders rather than some existing methods.

본 논문에서는 여러 가지 와이프 장면전환 중에서 이동 경계선의 형태가 선형 라인의 모양을 가지는 수평 와이프, 수직 와이프, 반도어(Barn Doors), 그리고 이동 경계선이 원의 모양을 가지는 아이리스 라운드(Iris Round) 와이프를 강건하게 검출하는 방법을 제안한다. 제안된 방법에서는 디지털 비디오 데이터를 입력 받아 차영상을 추출한 후 차영상에 허프변환을 적용하여 영상에 존재하는 라인과 원형의 이동 경계선을 강건하게 추출한다. 그런 다음, 평가함수를 통해 이들의 진행 방향과 형태를 효과적으로 분석하여 와이프의 발생 유무와 그 종류를 결정한다. 실험에서는 본 논문에서 제안된 와이프 검출 방법이 기존의 다른 방법에 비해 보다 정확하게 와이프를 검출한다는 것을 성능 비교를 통해 보여준다.

Keywords

References

  1. T.-J. Chin, D. Suter, and Hanzi Wang, "Boosting Histograms of Descriptor Distances for Scalable Multiclass Specific Scene Recognition," Image and Vision Computing, Vol. 29, No. 4, pp. 241-250, 2011. https://doi.org/10.1016/j.imavis.2010.11.002
  2. S. Li and M.-C. Lee, "Effective Detection of Various Wipe Transitions," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 6, pp. 663-673, 2007. https://doi.org/10.1109/TCSVT.2007.896621
  3. S. Mackowiak and M. Relewicz, "Wipe Transition Detection based on Motion Activity and Dominant Colors Descriptors," In Proceedings of the International Symposium on Image and Signal Processing and Analysis, pp. 480-483, 2005.
  4. S.-C. Pei and Y.-Z. Chou, "Effective Wipe Detection in MPEG Compressed Video Using Macro Block Type Information," IEEE Transactions on Multimedia, Vol. 4, No. 3, pp. 309-319, 2002. https://doi.org/10.1109/TMM.2002.802841
  5. P. Campisi, A. Neri, and L. Sorgi, "Wipe Effect Detection for Video Sequences," In Proceedings of the IEEE Workshop on Multimedia Signal Processing, pp. 161-164, 2002.
  6. J. Nam and A. H. Tewfik, "Detection of Gradual Transitions in Video Sequences Using B-Splines Interpolation," IEEE Transactions on Multimedia, Vol. 7, No. 4, pp. 667-679, 2005. https://doi.org/10.1109/TMM.2005.843362
  7. J. Cha, R. H. Cofer, and S. P. Kozaitis, "Extended Hough Transform for Linear Feature Detection," Pattern Recognition, Vol. 39, No. 6, pp. 1034-1043, 2006. https://doi.org/10.1016/j.patcog.2005.05.014
  8. J. Cao and A. Caia, "A Robust Shot Transition Detection Method Based on Support Vector Machine in Compressed Domain," Pattern Recognition Letters, Vol. 28, No. 12, pp. 1534-1540, 2007. https://doi.org/10.1016/j.patrec.2007.03.011
  9. M. Liu, X. Jiang, and A. C. Kotb, "A Multi-Prototype Clustering Algorithm," Pattern Recognition, Vol. 42, No. 5, pp. 689-698, May 2009. https://doi.org/10.1016/j.patcog.2008.09.015
  10. L. Wang, C. Leckie, R. Kotagiri, and J. Bezdek, "Approximate Pairwise Clustering for Large Data Sets via Sampling plus Extension," Pattern Recognition, Vol. 44, No. 2, pp. 222-235, 2011. https://doi.org/10.1016/j.patcog.2010.08.005