복합재료의 파괴기준(॥)

Failure Criteria of Composite Materials(||)

손병직(Byung-Jik Son) 정회원 | 건양대학교 부교수 | 공학박사 | strustar@konyang.ac.kr

1. 서론

복합재료의 파괴기준을 크게 3가지 즉, 한계기준 (Limit Criteria), 상호기준(Interactive Criteria), 분리 모드기준(Separate Mode Criteria)으로 구분할 수 있 으며, 각각 장단점을 가지고 있다¹⁰⁾. 가장 손쉽게 적 응할 수 있는 파괴이론은 한계기준인 Maximum Stress 와 Maximum Strain이지만, 한계기준의 단점으로는 각각 응력들의 상호관계를 고려할 수 없다는 데 있 으며, 보수적인 기준이다.

상호기준인 Tsai-Hill, Tsai-Wu 파괴기준은 각각 응력들의 상호관계를 고려할 수는 있지만, 파괴기준 식이 하나의 식으로 표현되기 때문에 파괴모드를 직 접적으로 예측할 수 없다는 단점이 있다. 이에 분리 모드기준은 한계기준 및 상호기준의 장점을 살린 기 준이다. 즉, 분리모드기준인 Hashin, Puck 파괴기준 은 파괴모드를 예측할 수 있으며, 각각 응력들의 상 호관계를 고려할 수 있다. 하지만, Hashin 기준 역시 넘어야 될 과제가 많이 있다^{3~4)}. Hashin의 기본 개 념을 발전 및 확립한 Puck 기준이 최근 각광을 받 고 있다. 이론의 타당성이 검증되고 많은 실험을 통 하여 다른 기준보다 그 우수성이 입증되고 있다^{5~6)}. 복합재료의 파괴기준은 등방성 재료와 비교해 볼 때, 이론 및 적용이 어렵고, 통용되는 파괴이론이 없 어, 결함 및 취약 부위를 판단하기가 쉽지 않다. 이에 본 기사에서는 복합재료 파괴기준들을 소개함으로서, 복합재료의 안전성 검토에 도움을 주고자 한다.

복합신소재구조학회 2011년 9월 "복합재료의 파 괴기준"의 학술기사를 게재한 바 있다¹⁰⁾. 본 기사는 "복합재료의 파괴기준"의 두 번째 기사로 최근 사용 이 늘어나고 있는 Puck의 파괴기준을 간략하게 소개 하고, 예제를 통해 복합재료의 파괴기준들을 비교, 분석하고자 한다.

2. Puck의 파괴기준

외력의 영향에 따라, 구조물의 응력 분포는 변하 게 된다. 이러한 응력은 축 응력, 휨 응력 그리고 전 단 응력으로 나타나게 되어 그 영향을 정량화하기가 용이하지 않다. 그 영향을 정량화하기 위한 방법으 로 복합재료의 파괴이론이 있다. 이전 기사¹⁰⁾에서 Maximum Stress, Maximum Strain, Tsai-Hill, Tsai-Wu, Hashin 파괴기준을 소개하였기 때문에. 본 기사에서 Puck's Fiber Failure(FF) Modes σ_{\parallel}^{t} Tension σ_{\parallel}^{c} FF Compression (a) Fiber Failure Modes

(b) Inter Fiber Failure Modes

는 복합재료의 파괴이론 중에서 최근 사용이 늘어나고 있는 Puck의 파괴기준을 간략하게 소개하고자 한다.

Puck의 파괴기준은 복합재료의 섬유 파손(fiber failure)과 모재 파손(inter-fiber failure)에 대하여 평 가할 수 있는 장점이 있다. Puck의 파손 모델은 Table 1과 같으며, Fig. 1은 Puck의 파손기준에 따 른 파손모드를 도식적으로 나타낸 것이다. Fig. 1(a) 와 (b)는 섬유 파손모드(Fiber Failure, FF)와 섬유간 파손모드(Inter Fiber Failure, IFF)를 각각 나타낸다^{3,4)}.

Type of failure	Failure mode	Failure condition	Condition for validity			
Fiber failure (FF)	Tensile	$\frac{1}{\epsilon_{1T}} \left(\epsilon_1 + \frac{\nu_{f12}}{E_{f1}} m_{\sigma f} \sigma_2 \right) = 1$	$(\cdots) \ge 0$			
	Compression (kinking)	$\frac{1}{\epsilon_{1C}} \left \left(\epsilon_1 + \frac{\nu_{f12}}{E_{f1}} m_{of} \sigma_2 \right) \right = 1 - (10 \gamma_{21})^2$	$(\cdots) \leq 0$			
Inter-fiber fracture (IFF)	Mode A $(heta_{fp}=0~\degree$)	$\sqrt{\left(\frac{\tau_{21}}{S_{21}}\right)^2 + \left(1 - p_{\perp \parallel}^{(+)} \frac{Y_T}{S_{21}}\right)^2 \left(\frac{\sigma_2}{Y_T}\right)^2} + p_{\perp \parallel}^{(+)} \frac{\sigma_2}{S_{21}} = 1 - \left \frac{\sigma_1}{\sigma_{1D}}\right $	$\sigma_2 \geqq \ 0$			
	Mode B ($\theta_{fp}=0~^\circ$)	$\frac{1}{S_{21}} \Big(\sqrt{\tau_{21}^2 + \left(p_{\perp \parallel}^{(-)} \sigma_2 \right)^2} + p_{\perp \parallel}^{(-)} \sigma_2 \Big) = 1 - \left \frac{\sigma_1}{\sigma_{1D}} \right $	$\begin{split} \sigma_2 &< 0 \; \text{ and} \\ 0 &\leq \left \frac{\sigma_2}{\tau_{21}}\right \leq \frac{R^A_{\perp\perp}}{ \tau_{21c} } \end{split}$			
	$\begin{array}{c} \text{Mode C} \\ \cos \theta_{fp} = \sqrt{\frac{f_w R_{\perp\perp}^A}{(-\sigma_2)}} \end{array}$	$\left[\left(\frac{\tau_{21}}{2\left(1 + p_{\perp \perp}^{(-)}\right)S_{21}} \right)^2 + \left(\frac{\sigma_2}{Y_C} \right)^2 \right] \frac{Y_C}{(-\sigma_2)} = 1 - \left \frac{\sigma_1}{\sigma_{1D}} \right $	$\begin{split} \sigma_2 &< 0 \text{ and} \\ 0 &\leq \left \frac{\tau_{21}}{\sigma_2}\right \leq \frac{ \tau_{21c} }{R_{\perp\perp}^4} \end{split}$			
Definitions*		$p_{\perp\parallel}^{(+)} = -\left(\frac{d\tau_{21}}{d\sigma_2}\right)_{\sigma_2 = 0} \text{ of } (\sigma_2,\tau_{21}) \text{ curve, } \sigma_2 \geq 0$				
	$p_{\perp\parallel}^{(-)} = -\left(\frac{d\tau_{21}}{d\sigma_2}\right)_{\sigma_2 = 0} \text{ of } (\sigma_2,\tau_{21}) \text{ curve, } \sigma_2 \leq 0$					
Parameter relationships	$R^{A}_{\perp \perp} = \frac{Y_{C}}{2\left(1 + p^{(-)}_{\perp \perp}\right)} = \frac{S_{21}}{2p^{(-)}_{\perp \parallel}} \left(\sqrt{1 + 2p^{(-)}_{\perp \parallel}\frac{Y_{C}}{S_{21}}} - 1\right)$					
		$p_{\perp\perp}^{(-)} = p_{\perp\parallel}^{(-)} \frac{R_{\perp\perp}^{\perp}}{S_{21}} \qquad \qquad \tau_{21c} = S_{21} \sqrt{1 + 2 p_{\perp\perp}^{(-)}}$				

Table	1	Failure	condition	and	parameters	defined	bv	Puck's	failure	mode
rabio	· · ·	i unui o	0011011011	unu	paramotoro	aonnoa	~ ,	1 001 0	ranaro	mouo

*Subscripts \perp , \parallel mean transverse and longitudinal directions respectively.

3. 파괴기준의 비교

파괴기준을 3가지 그룹 즉, 한계기준(Limit Criteria), 상호기준(Interactive Criteria), 분리모드기준(Separate Mode Criteria)으로 분류할 수 있다¹⁰⁾. 한계기준에서 Maximum Stress, 상호기준에서 Tsai-Wu, 분리모드 기준에서 Hashin과 Puck 파괴기준을 선택하여, 예제 를 통해 상호 비교, 분석하고자한다. 재료의 물성치 는 Table 2와 같이 Carbon/Epoxy 복합재료로 선정 하였다.

Table 2. Material	properties	for	Carbon/Epoxy	laminate
-------------------	------------	-----	--------------	----------

E_1	130.0 GPa	X_T	1200 MPa
E_2	10.0 GPa	X _C	1000 MPa
G_{12}	5.0 GPa	Y_T	60 MPa
ν_{12}	0.35	Y_C	200 MPa
		S	95 MPa

해석 모델은 Table 3과 같이 4개의 모델을 선정 하였다. Model A는 양단 고정이고 선하중 재하, Model B는 양단 고정이고 등분포하중 재하, Model C는 4단 고정이고 선하중 재하, Model D는 4단 고 정이고 등분포하중 재하인 경우를 나타낸다. 길이 10m이고, 폭 6m, 두께는 20mm이며, Table 2의 재 료가 0도 1단으로 배치된 경우이다.

Table 4~7은 Model A,B,C,D의 파괴기준을 나타 낸 것이다. Hashin 파괴기준과 Puck 파괴기준에서 FF(Fiber Failure)는 섬유의 파괴를, IFF(Inter Fiber Failure)는 모재의 파괴를 의미한다. 전체적인 공통점 으로는, Maximum Stress와 Puck의 FF 파괴기준이 유사하고, Tsai-Wu와 Hashin의 FF 파괴기준이 유사 하다. 또한, Hashin의 IFF와 Puck의 IFF가 유사함을 알 수 있다. 그러나, 취약부위의 패턴이 비슷하지만 파괴지수 값은 하중조건, 지점조건 등에 따라서 차 이가 크게 날 수 있는 것으로 분석된다.

Table 3. Analysis Model

Table 4는 Model A의 파괴기준을 나타낸다. 섬유 의 취약부위는 중앙 끝단이며(Hashin의 FF, Puck의 FF), 모재의 취약부위는 지점부(Hashin의 IFF, Puck 의 IFF)임을 알 수 있다.

Table 5는 Model B의 파괴기준을 나타낸다. 섬유 및 모재의 취약부위는 모두 지점부로 나타났으며, 파괴지수 값은 파괴기준에 따라서 약간 차이가 나는 것으로 분석된다.

Table 6은 Model C의 파괴기준을 나타낸다. 섬유 의 취약부위는 장변방향 지점 중앙부이며(Hashin의 FF, Puck의 FF), 모재의 취약부위는 판의 중앙부 (Hashin의 IFF, Puck의 IFF)임을 알 수 있다. Hashin 의 FF(154)와 Puck의 FF(12.4)의 차이가 크게 나타 남을 알 수 있다.

Table 4. Failure criteria of Model A

Table 6. Failure criteria of Model C

Table 7. Failure criteria of Model D

Table 7은 Model D의 파괴기준을 나타낸다. 섬유 의 취약부위는 장변방향 지점 중앙이며(Hashin의 FF, Puck의 FF), 모재의 취약부위는 단변방향 지점 중앙부(Hashin의 IFF, Puck의 IFF)임을 알 수 있다.

4. 결론

한계기준에서 Maximum Stress, 상호기준에서 Tsai-Wu, 분리모드기준에서 Hashin과 Puck 파괴기준을 선택하 여, 예제를 통해 파괴기준들을 상호 비교, 분석하였다.

전체적으로 Maximum Stress와 Puck의 FF 파괴기 준이 유사하고, Tsai-Wu와 Hashin의 FF 파괴기준이 유사하다. 또한, Hashin의 IFF와 Puck의 IFF가 유사 함을 알 수 있었다. 그러나, 취약부위의 패턴은 비슷 하지만 파괴지수 값은 하중조건, 지점조건 등에 따 라서 차이가 크게 날 수 있는 것으로 분석되었다. 파괴지수 값의 차이가 10배 이상 나는 경우도 발생 하였다.

이와 같이 복합재료에 대한 파괴기준은 어렵고 복 잡하기 때문에, 실제 선택하기가 쉽지 않다. 복합재 료의 파괴기준은 각 상황을 정확하게 고려하고, 실 험과의 타당성 등을 토대로 합리적으로 선택을 해야 할 것이다.

참고문헌

- Sun, C.T., Quinn, B.J., Tao, J. and Oplinger, D.W. (1996) "Comparative Evaluation of Failure Analysis Methods for Composite Laminates", NASA, DOT/FAA/AR-95/109.
- Pedro Ponces Camanho (2002) "Failure Criteria for Fibre-Reinforced Polymer Composites", DEMEGI, FEUP.
- A. Puck and H. Schurmann (1998) "Failure Analysis of FRP Laminates by means of Physically based Phenomenological Models", Composite Science and Technology 58, 1045-1067.
- A. Puck and H. Schurmann (2002) "Failure Analysis of FRP Laminates by means of Physically based Phenomenological Models", Composite Science and Technology 62, 1663-1662.
- M.J. Hinton, A.S. Kaddour and P.D. Soden (2002)
 "A comparison of the predictive capabilities of current failure theories for composite laminates,

judged against experimental evidence", Composite Science and Technology 62, 1725-1797.

- A.S. Kaddour, M.J. Hinton and P.D. Soden (2004) "A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions", Composite Science and Technology 64, 449-476.
- G. Narayana Naik and A.V. Krishna Murty (1999)
 "A failure mechanism-based approach for design of composite laminates", Composite Structures 45, 71-80.
- G. Narayana Naik, A.V. Krishna Murty and S. Gopalakrishnan (2005) "A failure mechanism based failure theory for laminated composites including the effect of shear stress", Composite Structures 69, 219-227.
- A.C. Orifici, I. Herszberg and R.S. Thomson (2008) "Review of methodologies for composite material modelling incorporating failure", Composite Structures 86, 194-210.
- 손병직 (2011), "복합재료의 파괴기준", 한국복합 신소재구조학회 학술기사, 2011년 9월호, 13~23.