DOI QR코드

DOI QR Code

1g Shaking Table Test on Soil and Stone-column Interaction Behavior under Seismic Loading

1g 진동대 실험을 이용한 지반-스톤칼럼의 상호작용 거동에 관한 연구

  • Kim, Jin-Man (Dept. of Civil Engineering, School of Civil and Environmental Engineering, Pusan National Univ.) ;
  • Ryu, Jeong-Ho (Dept. of Civil Engineering, Pusan National Univ.) ;
  • Kim, Mi-Na (Dept. of Civil and Environmental Engineering, Pusan National Univ.) ;
  • Son, Su-Won (Dept. of Civil and Environmental Engineering, Pusan National Univ.)
  • 김진만 (부산대학교 사회환경시스템공학부 토목공학전공) ;
  • 류정호 (부산대학교 토목공학과) ;
  • 김미나 (부산대학교 사회환경시스템 공학과) ;
  • 손수원 (부산대학교 사회환경시스템 공학과)
  • Received : 2012.03.18
  • Accepted : 2012.04.18
  • Published : 2012.04.30

Abstract

The responses of stone column-improved ground under seismic loading are investigated using a series of 1g shaking table tests. These tests show similar results to those of one dimensional numerical models for stone column-improved ground based on Baez's assumption on the soil and stone-column interaction. The experimental and numerical results show that the stone column can prevent large shear deformations incurred due to cyclic softening in clayey deposits, but they also show that the surface acceleration in the improved clayey deposits may amplify more than that in unimproved clayey deposits when subjected to short periodic seismic motions.

스톤칼럼으로 개량된 연약점토지반의 내진성능을 평가하기 위해 1g 진동대 실험을 수행하였다. 실험결과 스톤칼럼으로 보강된 모형지반의 거동은 지반과 스톤칼럼의 상호작용에 관한 Baez의 가정을 기초로 구성된 1차원 수치모델과 유사한 결과를 보였다. 실험결과와 수치해석 결과에 따르면 스톤칼럼으로 보강된 연약점토지반은 반복 연화현상(Cyclic softening)등으로 발생하는 과다한 전단변형이 감소하는 경향을 보이지만 단주기 특성을 가지는 지진파가 스톤칼럼으로 개량된 지반에 가해지는 경우에는 개량지반의 증가된 강성으로 인해 개량되지 않은 지반에 비해 가속도가 크게 증가하는 현상이 발생할 수도 있는 것으로 나타났다.

Keywords

References

  1. 김진만, 이현진, 류정호 (2010), "1g 진동대를 이용한 쇄석말뚝으로 개량된 연약점토 지반의 응답 특성", 한국지반공학회 논문집 제26권 제12호 pp.61-70.
  2. 한국지반공학회 (2010), 상호검증시험(Round Robin Test)을 통한 지진 지반응답해석 이해, (사) 한국지반공학회
  3. Balaam, N. P. & Booker J. R. (1981), "Analysis of rigid rafts supported by granular piles", Journal for Numerical and Analytical methods in Geomechanics, Vol.5, pp.379-403 https://doi.org/10.1002/nag.1610050405
  4. Barksdale, R. D. & Bachus, R.C. (1983), Design and construction with stone columns, Final Report to FHWA
  5. Baez J. I. (1995), A design model for the reduction of soil liquefaction by vibro-stone columns. Ph.D. Dissertation, University of Southern California
  6. Baez J. I. & Martin G. R. (1995), "Permeability and shear wave velocity of vibro-replacement stone columns", Soil Improvement for Earthquake Hazard Mitigation, ASCE Geotechnical Special Publication, New York, NY49, pp.66-81.
  7. Boulanger R. Idriss I. Stewart D. Hasash Y. Schmidt B. (1998), "Drainage capacity of stone columns or gravel drains for mitigating liquefaction", Proceeding soft Geotechnical Earthquake Engineering and Soil Dynamics III, ASCE Geotechnical Special Publ. No.75(1), pp.678-690.
  8. Goughnour R. R. & Bayuk A.A (1979), "A field study of long-term settlement of loads supported by stone columns in soft ground", Proceedings, International Conference on Soil Reinforcement: Reinforced Earth and Other Techniques, Vol.1 Paris: 279-286.
  9. Goughnour R.R & Pestana J.M, (1998), "Mechanical behaviour of stone columns under seismic loading" 2nd international conference on ground improvement techniques, 8-9 October 1998, Singapore: 157-162.
  10. Greenwood D.A (1975), "Vibroflotation: Rationale for design and practice", methods of treatment of unstable ground, ED FG Bell, Newness-Butters worth, London pp.189-209.
  11. Iai S. (1988), "Large scale model tests and analysis of gravel rains", Report of Portand Harbour research Institute English Edition 27(3).
  12. Idriss I. (1990), "Response of soft soil sites during earthquakes", H. B. Seed Memorial Symposium, Vol.2, Bi Tech: 273-289.
  13. Kramer S. L. (1996), Geotechnical earthquake engineering Prentice- Hall, Inc., Upper Saddle River, NJ: 653
  14. Mitchell J. K. & Huber (1985), "Performance of a stone column foundation", ASCE Journal of Geotechnical Engineering, 111(2): 205-223. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:2(205)
  15. Mitchell J. K. & Wentz F.J. (1991), Performance of improved ground during the Loma Prieta Earthquake, University of California, Berkeley UCB/EERC Report91/12.
  16. Onoue A. (1988), "Diagrams considering well resistance for designing spacing ratio of gravel drains", Soil sand Foundations 28(3):160-168. https://doi.org/10.3208/sandf1972.28.3_160
  17. Priebe H. J. (1989), "The prevention of liquefaction by vibroreplacement", Proceedings of Eathquake Resistance Construction and Design, Berlin, Germany.
  18. Preibe H. J. (1991), "Vibro-replacement design criteria and quality control", In: Esrig, Bachus(Eds.), Deep Foundation Improvements:Design, Construction, and Testing, ASTM STP1089, pp.62-72. Philadelphia.
  19. Goughnour R.R & Pestana J.M, (1998), "Mechanical behaviour of stone columns under seismic loading" 2nd international conference on ground improvement techniques, 8-9 October 1998, Singapore: 157-162.
  20. Seed H.B. & Booker J.R (1977), "Stabilization of potentially liquefiable sand deposits using gravel drains", ASCE Journal of Geotechnical Engineering Division 103 (7):757-768.
  21. Timothy C. siegel, William M. Camp, Chang C.C, Marcos Loizias (2002), "Site response of improved ground in the coastal eastern United States", 4thinternational conference on ground improvement techniques, 26-28 March 2002, Kuala Lumpur, Malaysia, Vol.2
  22. Vucetic M. & Dobry R. (1991), "Effect of soil plasticity on cyclic response", ASCE Journal of Geotechnical Engineering, 117(1): 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)

Cited by

  1. 쇄석 띠기초와의 거리에 따른 주변지반의 가속도 변화 vol.20, pp.1, 2012, https://doi.org/10.5762/kais.2019.20.1.217
  2. Dynamic Behavior of Ground Improved Using a Crushed Stone Foundation Wall vol.11, pp.10, 2019, https://doi.org/10.3390/su11102767