DOI QR코드

DOI QR Code

Development of Three-dimensional Approximate Analysis Method for Piled Raft Foundations

말뚝지지 전면기초의 3차원 근사해석기법 개발

  • Received : 2011.11.30
  • Accepted : 2012.04.18
  • Published : 2012.04.30

Abstract

A three-dimensional approximate computer-based method, YSPR (Yonsei Piled Raft), was developed for analysis of behavior of piled raft foundations. The raft was modeled as a flat shell element having 6 degrees of freedom at each node and the pile was modeled as a beam-column element. The behaviors of pile head and soil were controlled by using $6{\times}6$ stiffness matrix. To model the non-linear behavior, the soil-structure interaction between soil and pile was modeled by using nonlinear load-transfer curves (t-z, q-z and p-y curves). Comparison with previous model and FEM analysis showed that YSPR gave similar load-displacement behaviors. Comparison with field measurement also indicated that YSPR gave a reasonable result. It was concluded that YSPR could be effectively used in analysis and design of piled raft foundations.

철지반의 비선형성을 고려한 말뚝지지 전면기초의 3차원 해석기법(YSPR)을 개발하였다. 전면기초는 6개의 자유도를 가진 평면쉘 요소로, 말뚝은 보-기둥 요소로 모델링하여 전면기초와 결합하였다. 또한 말뚝두부 및 지반의 강성은 $6{\times}6$ 강성행렬로 모델링 하였으며, 전면기초-말뚝-지반의 상호작용은 비선형 하중전이함수를 이용하여 선형/비선형거동의 모사가 가능하도록 하였다. 기존의 단순해석기법, 유한요소해석 및 현장계측값과의 비교 분석 결과, 본 해석기법이 대단면 말뚝지지전면기초에서 말뚝의 축하중 분포와 침하량을 비교적 정확히 산정하는 것으로 판단되며, 이러한 검증을 토대로 실제 대단면 기초설계에 대한 적용 가능함을 확인할 수 있었다.

Keywords

References

  1. 이승훈, 박영호, 송명준 (2007), "말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구", 한국지반공학회 논문집, 제 23권, 제12호, pp.83-94.
  2. 이완훈 (1995), 면내 회전자유도를 가진 변이 평면 쉘요소의 개발과 이를 적용한 적응적 체눈 세분화, 박사학위논문, 한국과학기술원 토목공학과.
  3. 이진형, 정상섬 (2007), "연약지반에 시공된 Piled Raft 기초의 3차원 거동 분석", 한국지반공학회 논문집, 제23권, 제5호, pp. 63-75.
  4. 원진오, 정상섬(2005), "교량 말뚝기초의 캡강성을 고려한 비선형 3차원 해석", 한국지반공학회 논문집, 제21권, 제6호, pp.19-30.
  5. 최창근, 이필승, 박용명 (1999), "면내회전자유도를 가지는 4절점 비적합 평면쉘요소의 개발", 대한토목학회 논문집, 제19권 제I-5호, pp.663-673.
  6. ABAQUS: User's manual. version 6.10. Hibbit, Karlsson & Sorensen, Pawtucket R. I, 2010.
  7. Burland, J. B., Broms, B. B. and De Mello, V.F.B. (1977), "Behaviour of founadations and structures", Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.495-549.
  8. Brown, P. T. and Weisner, T. J. (1975), "The behaviour of uniformly loaded piled strip footings", Soils and Foundations, Vol.15, No.4, pp.13-21.
  9. Clancy, P., and Randolph, M. F. (1993), "An approximate analysis procedure for piled raft foundations", International Journal for Numerical and Analytical Methods in Geomechanics, London, Vol.17, No.12, pp.849-869. https://doi.org/10.1002/nag.1610171203
  10. de Sanctis, L. and Mandolini, A. (2003), "On the ultimate vertical load of piled rafts on the soft clay soils", Proceedings of 4th International Geotechnical Seminar on Deep Foundation on Bored and Auger Piles, Ghent, Millpress, Rotterdam, pp.379-386.
  11. Hain, S. J. & Lee, I. K. (1978), "The analysis of flexible raft-pile systems," Geotechnique, Vol.28, No.1, pp.65-83. https://doi.org/10.1680/geot.1978.28.1.65
  12. Jeong, S. S., Lee, J. H. and Lee, C. J. (2004), "Slip effect at the pile-soil interface on dragload", Computers & Geotechnics, Vol.31, pp.115-126. https://doi.org/10.1016/j.compgeo.2004.01.009
  13. Katzenbach, R. Arslan, U. and Moormann, C. (2000), "Piled raft foundations projects in Germany", Design applications of raft foundations, Hemsley, J. A. Editor, Thomas Telford, pp.323-392.
  14. Katzenbach, R. Schmitt, A. and Turek, J. (2005), "Assessing settlement of high-rise s tructures by 3D simulations", Computer- Aided Civil and Infrastructure Engineering, 20, pp.221-229. https://doi.org/10.1111/j.1467-8667.2005.00389.x
  15. Kitiyodom P, Matsumoto T. (2003), "A simplified analysis method for piled raft found ations in non-homogeneous soils", International Journal for Numerical and Analytical Methods in Geomechanics, 27, pp.85-109. https://doi.org/10.1002/nag.264
  16. Kuwabara, F. (1989), "An elastic analysis for piled raft foundations in a homogeneous soil", Soils and Foundations. Vol.28, No.1, pp.82-92.
  17. Lee, J. H., Kim, Y. H., and Jeong, S. S. (2010), "Three-dimensional analysis of bearing behavior of piled raft on soft clay", Computers & Geotechnics, Vol.37, pp.103-114. https://doi.org/10.1016/j.compgeo.2009.07.009
  18. Lee, I. K. (1993), "Analysis and performance of raft and raft-pile foundations in a homogeneous soil", Proceedings of 3rd International Conference on Case History in Geotechnical Engineering, St Louis (also Research Report R133, ADFA, University of New South Wales, Australia).
  19. Mandolini, A., Russo, G., Viggiani, C. (2005), "Piled foundations: Experimental I nvestigations, analysis and design", State-of-the-Art Rep. Proc., 16th ICSMGE, Osaka, Japan, Vol.1, pp.177-213.
  20. O'Neill, M. W. and Dunnavant, T. W.(1984), "A Study of Effect of Scale, Velocity, and Cyclic Degradability on Laterally Loaded Single Piles in Overconsolidated Clay.", Rep. No. UHCE 84-7, Dept. of Civil Engineering, Univ. of Houston, Houston, TX.
  21. Ottaviani, M. (1975), "Three-Dimensional Finite element Analysis of Vertically loaded pile groups", Geotechnique, 25, pp.159-174. https://doi.org/10.1680/geot.1975.25.2.159
  22. Poulos, H. G. (1991), "Analysis of piled strip foundations," Proceedings of Conference on computer methods and advances in geomechanics, Rotterdam: Balkema, pp.183-191.
  23. Poulos, H, G. (1979), "Group factors for pile-deflection estimation", J. Geotech. Engrg., ASCE, Vol.105, No.12, pp.1489-1509.
  24. Poulos, H, G. (2001), "Piled raft foundations: design and applications", Geotechnique, 51, No.2, pp.95-113. https://doi.org/10.1680/geot.51.2.95.40292
  25. Poulos, H. G. (1994), "An approximate numerical analysis of pile-raft interaction," International Journal for Numerical and Analytical Methods in Geomechanics, London, Vol.18, No.2, pp.73-92. https://doi.org/10.1002/nag.1610180202
  26. Randolph, M. F. (1983), "Design of piled foundations," Research Report Soils TR143. Cambridge: Cambridge University Engineering Department.
  27. Randolph, M. F. (1994), "Design Methods for pile groups and piled rafts", Proceedings of 13th ICSMFE, New Delhi, India, Vol.5, pp.61-82.
  28. Reese L. C., O'Neill M. W., Smith R. E. (1970) "Generalized analysis of pile f oundations", Journal of the Soil mechanics and foundations division, ASCE, 96(1), pp.235-250.
  29. Reul, O. and Randolph, M.F. (2003), "Piled rafts in overconsolidated clay-Comparison of in-situ measurements and numerical analyses," Geotechnique, Vol.53, No.3, pp.301-315. https://doi.org/10.1680/geot.2003.53.3.301
  30. Sommer, H. (1991), "Entwicklung der Hochhausgru¨ndungen in Frankfurt/Main Festkoll oquium 20 Jahre Grundbauinstitut" Prof. Dr. -Ing. H. Sommer und Partner, Germany, pp.47-62.
  31. Wang, S. T., and Reese, L. C. (1993), "COM624P - Laterally loaded pile analysis for the microcomputer, ver. 2.0" FHWA-SA- 91-048, Springfield, VA.
  32. Wang, A. (1996), "Three dimensional finite element analysis of pile groups and piled -raft", Ph.D. dissertation, University of Manchester, U.K.
  33. Won, J. O., Jeong, S. S., Lee, J. H. and Jang, S. Y. (2006), "Nonlinear three- dimensional analysis of pile group supported columns considering pile cap flexibility", Computers & Geotechnics, Vol.33, pp.355-370. https://doi.org/10.1016/j.compgeo.2006.07.007
  34. Zafir, Z. (2002), "Seismic Foundation Stiffness For Bridges", Deep Foundations 2002, pp.1421-1433.
  35. Zhang, G. M., Lee, I. K. & Zhao, X. H. (1991), "Interactive analysis of behaviour of raft-pile foundations", Proceedings of Geo-Coast' 91, Yokohama2, pp.759-764.
  36. Zhang, H. H. and Small, J.C. (2000), "Analysis of axially and laterally loaded pile groups embedded in layered soils," Proceedings of 8th Australia NewZealand Conf. on Geomechanics, Hobart, Vol.1, 475-483.

Cited by

  1. Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction vol.26, pp.2, 2014, https://doi.org/10.4334/JKCI.2014.26.2.181
  2. 구조물-말뚝지지 전면기초의 3차원 상호작용 해석기법 개발 vol.29, pp.6, 2012, https://doi.org/10.7843/kgs.2013.29.6.19
  3. 단일 현장타설말뚝의 가상고정점 설계 및 분리해석 적용성 평가 vol.29, pp.7, 2012, https://doi.org/10.7843/kgs.2013.29.7.57