DOI QR코드

DOI QR Code

Developing genetic resources for pre-breeding in Brassica oleracea L.: an overview of the UK perspective

  • Walley, Peter G. (The University of Warwick, School of life Sciences, Wellesbourne Campus) ;
  • Teakle, Graham R. (The University of Warwick, School of life Sciences, Wellesbourne Campus) ;
  • Moore, Jonathan D. (The University of Warwick, School of life Sciences, Wellesbourne Campus) ;
  • Allender, Charlotte J. (The University of Warwick, School of life Sciences, Wellesbourne Campus) ;
  • Pink, David A.C. (Harper Adams University College Newport) ;
  • Buchanan-Wollaston, Vicky (The University of Warwick, School of life Sciences, Wellesbourne Campus) ;
  • Barker, Guy C. (The University of Warwick, School of life Sciences, Wellesbourne Campus)
  • 투고 : 2012.03.19
  • 심사 : 2012.03.25
  • 발행 : 2012.03.31

초록

The vegetable brassicas are an important crop worldwide and are of significant commercial value. In order to ensure our targets for food security are met it is important that these crops are continually improved to increase sustainability of production, increase nutritional quality and reduce waste. Development of resistances against both biotic and abiotic stress are recognised as being key. Plant breeding plays a vital role in addressing these issues through the development of new and improved varieties. This continued improvement is becoming evermore dependent on our ability to identify and introgress beneficial alleles from 'exotic' germplasm into elite breeding material. Increasingly, more diverse germplasm such as those found in genebanks is being screened for benificial allelic variation, however, plant breeders often find it difficult to make use of such material due to the time required to remove undesirable characteristics from progeny due to linkage drag. This article describes how we have attempted to overcome this and develop resources that make the diversity available within the $Brassica$ $oleracea$ genepool more accessible.

키워드

참고문헌

  1. Allender, C. J. and King, G. J. (2010). Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54
  2. Altshuler et al. (2010). Integrating common and rare genetic variation in diverse human populations. Nature 467:52-58
  3. Baird, N. A., Etter, P. D., Atwood,T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., Johnson, E. A. (2008). Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 3(10): e3376 https://doi.org/10.1371/journal.pone.0003376
  4. Bettey, M., Finch-Savage, W., King, G.J., Lynn, J. R. (2000). Quantitative genetic analysis of seed vigour and preemergence seedling growth traits in Brassica oleracea. New Phytol 148:277-286 https://doi.org/10.1046/j.1469-8137.2000.00760.x
  5. Bohuon, E. J. R., Keith, D. J., Parkin, L. A. P., Sharpe, A. G., Lydiate, D. J. (1996). Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor Appl Genet 93:833-839 https://doi.org/10.1007/BF00224083
  6. Bohuon, E. J. R., Ramsay, L. D., Craft, J. A., Arthur, A. E., Marshall, D. F., Lydiate, D. J., and Kearsey, M. J. (1998). The association of flowering time QTL with duplicated regions and candidate loci in Brassica oleracea. Genetics 150:393-401
  7. B. oleracea sequencing consortium (2011): http://brassica.jcvi.org/cgibin/brassica/consortium.cgi
  8. Broadley, M. R., Hammond, J. P., King, G. J., Astley, D., Bowen, H. C., Meacham, M. C., Mead, A., Pink, D. A. C., Teakle, G. R., Hayden, R. M., Spracklen, W. P., White, P. J. (2008). Leaf-calcium (Ca) and magnesium (Mg) concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol 146:1707-1720 https://doi.org/10.1104/pp.107.114645
  9. Broadley, M. R., O'Lochlainn, S., Hammond, J. P., Bowen, H. C., Cakmak, I., Eker, S., Erdem, H., King, G. J., White, P. J. (2010). Shoot zinc (Zn) concentration varies widely within Brassica oleracea L. and is affected by soil Zn and phosphorus (P). J. Hort. Sci. Biotech 85:375-80
  10. Darling, D., Harling, R., Simpson, R. A., McRoberts, N., and Hunter, E. A. (2000). Susceptibility of broccoli cultivars to bacterial head rot: in vitro screening and the role of head morphology in resistance. Eur J Plant Pathol 106:11-17 https://doi.org/10.1023/A:1008759315557
  11. Dias, J. S. (2001). Effect of incubation temperature regimes and culture medium on broccoli microspore embryogenesis. Euphytica 119:389-394 https://doi.org/10.1023/A:1017563915319
  12. Duijs, J. G., Voorrips, R. E., Visser, D. L., Custers, J. B. M. (1992). Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica 60:45-55
  13. FAOSTAT. (2010) Food and Agricultural Statistics Division [Online] http://faostat.fao.org/
  14. Farinho, M., Coelho, P., Carlier, J., Svetleva, D., Monteiro, A., Leitão, J. (2004). Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor Appl Genet 109(7):1392-1398 https://doi.org/10.1007/s00122-004-1747-0
  15. Finch-Savage, W. E., Clay, H. A., Lynn, J. R., Morris, K. (2010). Towards a genetic understanding of seed vigour in smallseeded crops using natural variation in Brassica oleracea. Plant Sci 179:582-589
  16. Hall, N. M., Griffiths, H., Corlett, J., Jones, H., Lynn, L., and King, G. J. (2005). Relationships between water-use traits in Brassica oleracea L. resolved by quantitative genetic analysis. Plant Breeding 124:557-564 https://doi.org/10.1111/j.1439-0523.2005.01164.x
  17. Hammond, J. P., Broadley, M. R., White, P. J., King, G. J., Bowen, H. C., Hayden, R., Meacham, M. C., Mead, A., Overs, T., Spracklen, W. P., Greenwood, D. J. (2009). Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp. Bot 60:1953-1968 https://doi.org/10.1093/jxb/erp083
  18. Iniguez-Luy, F. L., Voort, A. V., and Osborn, T. C. (2008). Development of public SSR markers derived from genomic sequence of a rapid cycling B. oleracea L. genotype. Theor Appl Genet 117:977-985 https://doi.org/10.1007/s00122-008-0837-9
  19. Iniguez-Luy, F. L., Lukens, L., Farnham, M. W., Amasino, R. M., Osborn, T. C. (2009). Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 117: 977-985
  20. Jeffery, E. H., Brown, A. F., Kurilich, A. C., Keck, A. S., Matusheski, N., Klein, B. P., and Juvik, J. A. (2003). Variation in content of bioactive compounds in Broccoli. J Food Compos Anal 16:323-330 https://doi.org/10.1016/S0889-1575(03)00045-0
  21. Jeffery, E. H., Araya, M. (2009). Physiological effects of broccoli consumption. Phytochem Rev 8(1):283-298 https://doi.org/10.1007/s11101-008-9106-4
  22. Leckie, D., Astley, D., Crute, I. R., Ellis, P. R., Pink, D. A. C., Boukema, I., Monteiro, A. A., Dias, S. (1996). The location and exploitation of genes for pest and disease resistance in European gene bank collections of horticultural brassicas. Acta Horticulturae 407:95-101
  23. Lichter, R. (1989). Efficient yield of embryoids by culture of isolated microspores of different brassicaceae species. Plant Breeding, 103:119-123 https://doi.org/10.1111/j.1439-0523.1989.tb00359.x
  24. Moreno, D. A., Carvajal, M., Lòpez-Berenguer, C., Garcìa- Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm and Biomed Anal 41:1508-1522 https://doi.org/10.1016/j.jpba.2006.04.003
  25. Paterson, A. H. (2006). Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nature Rev Genet 7:174-184
  26. Perkle, J. (2008). SNP genotyping: six technologies that keyed a revolution. Nat methods 5:447-453 https://doi.org/10.1038/nmeth0508-447
  27. Pink, D., Bailey, L., McClement, S., Hand, P., Mathas, E., Buchanan-Wollaston, V., Astley, D., King, G., Teakle, G. (2008). Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164:509-514 https://doi.org/10.1007/s10681-008-9742-1
  28. Qiu, D., Morgan, C., Shi, J., Long, Y., Liu, J., Li, R., Zhuang, X., Wang, Y., Tan, X., Dietrich, E., Weihmann, T., Everett, C., Vanstraelen, S., Beckett, P., Fraser, F., Trick, M., Barnes, S., Wilmer, J., Schmidt, R., Li, J., Li, D., Meng, J., Bancroft, I. (2006). A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67-80 https://doi.org/10.1007/s00122-006-0411-2
  29. Rae, A. M., Howell, E. C., and Kearsey, M. J. (1999). More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586-596 https://doi.org/10.1038/sj.hdy.6886050
  30. Ramsay, L. D., Jennings, D. E., Kearsey, M. J., Marshall, D. F., Bohuon, E. J. R., Arthur, A. E., Lydiate, D. J. (1996). The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39(3):558-567 https://doi.org/10.1139/g96-071
  31. Reeves, P. A., Panella, L. W., Richards, C. M. (2012). Retention of agronomically important variation in germplasm core collections: implications for allele mining. Theor Appl Genet 124(6):1155-1171 https://doi.org/10.1007/s00122-011-1776-4
  32. Salathia, N., Lynn, J. R., Millar, A. J., King, G. J. (2007). Detection and Resolution of Genetic Loci Affecting Circadian Period in Brassica oleracea. Theor Appl Genet 114:683-692 https://doi.org/10.1007/s00122-006-0468-y
  33. Sebastian, R. L., Howell, E. C., King, G. J., Marshall, D. F., Kearsey, M. J. (2000). An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100(1):75-81 https://doi.org/10.1007/s001220050011
  34. Sebastian, R. L., Kearsey, M. J., King, G. J. (2002). Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L. Theor Appl Genet 104(4): 601-609 https://doi.org/10.1007/s001220100743
  35. Suwabe, K., Morgan, C., and Bancroft, I. (2008). Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169-176 https://doi.org/10.1139/G07-113
  36. Takahata, Y., Keller, W. A. (1991). High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74:235-242 https://doi.org/10.1016/0168-9452(91)90051-9
  37. Traka, M., and Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269-282 https://doi.org/10.1007/s11101-008-9103-7
  38. U, N. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. J JPN Bot 7:389-452
  39. Walley, P. G. and Buchanan - Wollaston, V. (2011). Chapter 5 - Brassica; in: Health promoting properties of fruit and vegetables. Edited by Terry L. CABI UK. ISBN-13:9781845935283
  40. Walley, P. G., Carder, J. C., Skipper, E., Mathas, E., Lynn, J., Pink, D., Buchanan-Wollaston, V. (2012). A new framework broccoli x broccoli genetic map: better for breeders, better for complex trait analysis. Theor Appl Genet 124(3):467-484 https://doi.org/10.1007/s00122-011-1721-6
  41. White, P.J., Hammond, J.P., King, G.J., Bowen, H.C., Hayden, R.M., Meacham, M.C., Spracklen, W.P., Broadley, M.R. (2010). Genetic Analysis of Potassium Use Efficiency in Brassica oleracea L. Ann Bot-London 105(7):1199-1210
  42. Wurr, D. C. E., Hambridge, A. J., Fellows, J. R., Lynn, J. R., Pink, D. A. C. (2002). The influence of water stress during crop growth on the postharvest quality of broccoli. Postharvest Biol Tec 25:193-198 https://doi.org/10.1016/S0925-5214(01)00171-5

피인용 문헌

  1. Towards new sources of resistance to the currant-lettuce aphid (Nasonovia ribisnigri) vol.37, pp.1, 2017, https://doi.org/10.1007/s11032-016-0606-4
  2. Who is sowing our seeds? A systematic review of the use of plant genetic resources in research 2017, https://doi.org/10.1007/s10722-017-0491-7
  3. Genic simple sequence repeat markers for measuring genetic diversity in a native food crop: a case study of Australian Kunzea pomifera F.Muell. (muntries) vol.65, pp.3, 2018, https://doi.org/10.1007/s10722-017-0584-3
  4. Addressing the threat of climate change to agriculture requires improving crop resilience to short-term abiotic stress pp.2043-6866, 2018, https://doi.org/10.1177/0030727018807722