References
- S. H. Chang, Y. H. Jeong, and B. S. Shin, "Critical Heat Flux Enhancement," Nucl. Eng. Technol., vol. 38, pp. 753-762 (2006)
- S. U. S. Choi, "Nanofluid: From Vision to Reality through Research," Journal of Heat Transfer, vol. 131, 033106 (9 pages) (2006)
- S. H. Chang, W. Baek, and T. M. Bae, "A Study of Critical Heat Flux for Low Flow of Water in Vertical Round Tubes under Low Pressure," Nucl. Eng. Design, vol. 132, pp. 225-237 (1991) https://doi.org/10.1016/0029-5493(91)90267-L
- H. C. Kim, W. Baek, S. H. Chang, "Critical Heat Flux of Water in Vertical Round Tubes at Low Pressure and Low Flow Conditions," Nucl. Eng. Design, vol. 199, pp. 49-73 (2000) https://doi.org/10.1016/S0029-5493(99)00074-6
- S. J. Kim, T. McKrell, J. Buongiorno, and L. Hu, "Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure," Journal of Heat Transfer, vol. 130, pp. 044501 (3 pages) (2008) https://doi.org/10.1115/1.2818787
- S. J. Kim, T. McKrell, J. Buongiorno, and L. Hu, "Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids," Journal of Heat Transfer, vol. 131, pp. 043204 (7 pages) (2009) https://doi.org/10.1115/1.3072924
- T. I. Kim, Y. H. Jeong, and S. H. Chang, "An Experimental Study on CHF Enhancement in Flow Boiling using Al2O3 Nano-fluid," Int. J. Heat Mass Transfer, vol. 53, pp. 1015-1022 (2010) https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.011
- D. C. Groeneveld, L. K. H. Leung, P. L. Kirillov V. P. Bobkov, I. P. Smogalev, V. N. Vinogradov, X. C. Huang, and E. Royer, "The 1995 Look-up Table for Critical Heat Flux in Tubes," Nucl. Eng. Design, vol. 163, pp. 1-24 (1996) https://doi.org/10.1016/0029-5493(95)01154-4
- K. Ahn, "Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA," MIT, Department of Nuclear Engineering (2006)
- D. C. Groeneveld, J. Q. Shan, A. Z. Vasic, L. K. H. Leung, A. Durmayaz, J. Yang, S. C. Cheng, and A. Tanase, "The 2006 CHF Look-up Table," Nucl. Eng. Design, vol. 237, pp. 1909-1922 (2007) https://doi.org/10.1016/j.nucengdes.2007.02.014
- S. W. Lee, S. D. Park, S. Kang, I. C. Bang, and J. H. Kim, "Investigation of Viscosity and Thermal Conductivity of SiC Nanofluids for Heat Transfer Applications," Int. J. Heat Mass Transfer, vol. 54, pp. 433-438 (2011) https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026
- V. Saeid and W. Dongsheng, "Critical heat flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel," Journal of Heat Transfer, vol. 132, pp. 102404 (7 pages) (2010) https://doi.org/10.1115/1.4001629
- P. B. Whalley, Two-Phase Flow and Heat Transfer, pp. 4-11, Oxford University Press, Oxford New York Tokyo (1996)
- O. Baker, "Design of Pipelines for the Simultaneous Flow of Oil and Gas," Fall Meeting of the Petroleum Branch of AIME, Dallas, Texas, Oct. 19-21, 1953
- G, F. Hewitt and D. N. Roberts, "Studies of Two Phase Flow Patterns by Simultaneous X-ray and Flash Photography," AERE-M2159 (1969)
- Y. Taitel and A. E. Dukler, "A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal gas-liquid flow," AIChE J., vol. 22, pp. 47-55 (1976) https://doi.org/10.1002/aic.690220105
- J. G. Collier and J. R. Thome, Convective Boiling and Condensation, 3 rd ed., pp. 329-367, Oxford University Press, Oxford (1994)
- A. E. Bergles, "Burnout in Boiling Heat Transfer, Part II: Subcooled and Low Quality Forced Convection Systems," Nucl. Safety, vol. 18, pp. 154-167 (1977)
- S. K. Moon, W. Baek, and S. H. Chang, "Parametric Trends Analysis of the Critical Heat Flux Based on Artificial Neural Networks," Nucl. Eng. Design, vol. 163, pp. 29-49 (1996) https://doi.org/10.1016/0029-5493(95)01178-1
- M. S. Sarwar, Y. H. Jeong, and S. H. Chang, "Subcooled Flow Boiling CHF Enhancement with Porous Surface Coatings," Int. J. Heat Mass Transfer, vol. 50, pp. 3649-3657 (2007) https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.011
-
I. C. Bang and S. H. Chang, "Boiling heat transfer performance and phenomena of
$Al_2O_3$ -water nano-fluids from a plain surface in a pool," International Journal of Heat and Mass Transfer, vol. 48, pp. 2407-2419 (2005) https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047 - I. C. Bang and J. H. Kim, "Thermal-fluid characterizations of ZnO and SiC nanofluids for advanced nuclear power plants," Nuclear technology, vol. 170, no. 1, pp 16-27 (2010) https://doi.org/10.13182/NT10-A9442
- I. C. Bang, J. H. Jeong, "Nanotechnology for advanced nuclear thermal-hydraulics and safety: boiling and condensation," Nuclear Engineering and Technology, vol. 43, no. 3, pp. 217-242 (2011) https://doi.org/10.5516/NET.2011.43.3.217
Cited by
- Study on Heat Transfer and Fouling of Flow Boiling Systems using Oxidized Graphene Nanofluid vol.36, pp.3, 2016, https://doi.org/10.7836/kses.2016.36.3.063
- Cautions required for the boiling test of a silver–water nanofluid vol.52, pp.12, 2016, https://doi.org/10.1007/s00231-016-1796-3
- Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid vol.130, pp.3, 2017, https://doi.org/10.1007/s10973-017-6661-1
- Analytical Modeling of Boiling Nanofluids vol.31, pp.1, 2017, https://doi.org/10.2514/1.T4910
- Experimental Assessment of Saturation Behavior of Boiling Nanofluids: Pressure and Temperature vol.31, pp.3, 2017, https://doi.org/10.2514/1.T5081
- Fundamental Issues, Technology Development, and Challenges of Boiling Heat Transfer, Critical Heat Flux, and Two-Phase Flow Phenomena with Nanofluids pp.1521-0537, 2019, https://doi.org/10.1080/01457632.2018.1470285
- Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids pp.1432-1181, 2019, https://doi.org/10.1007/s00231-018-2353-z