DOI QR코드

DOI QR Code

A GENERALIZATION OF THE LORENTZIAN SPLITTING THEOREM

  • Yun, Jong-Gug (Department of Mathematics Education Korea National University of Education)
  • 투고 : 2011.03.15
  • 발행 : 2012.05.31

초록

In this paper, we obtain a generalized Lorentzian splitting theorem by weakening the assumption of nonnegative Ricci curvature.

키워드

참고문헌

  1. J. Beem, P. Ehrlich, and K. Easley, Global Lorentzian Geometry, 2nd ed., Marcel Dekker, New York, 1996.
  2. A. Borde, Geodesic focusing, energy conditions and singularities, Classical Quantum Gravity 4 (1987), no. 2, 343-356. https://doi.org/10.1088/0264-9381/4/2/015
  3. C. Chicone and P. Ehrlich, Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds, Manuscripta Math. 31 (1980), no. 1-3, 297-316. https://doi.org/10.1007/BF01303279
  4. J.-H. Eschenburg, The splitting theorem for space-times with strong energy condition, J. Differential Geom. 27 (1988), no. 3, 477-491. https://doi.org/10.4310/jdg/1214442005
  5. G. Galloway, The Lorentzian splitting theorem without the completeness assumption, J. Differential Geom. 29 (1989), no. 2, 373-387. https://doi.org/10.4310/jdg/1214442881
  6. G. Galloway and A. Horta, Regularity of Lorentzian Busemann Functions, Trans. Amer. Math. Soc. 348 (1996), no. 5, 2063-2084. https://doi.org/10.1090/S0002-9947-96-01587-5
  7. R. P. A. C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Differential Geom. 31 (1990), no. 1, 163-184. https://doi.org/10.4310/jdg/1214444093
  8. F. J. Tipler, Singularities and causality violation, Ann. Physics 108 (1977), no. 1, 1-36. https://doi.org/10.1016/0003-4916(77)90348-7
  9. S.-T. Yau, Problem section, Seminar on Differential Geometry, pp. 669-706, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, N.J., 1982.