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PRIME RADICALS IN UP-MONOID RINGS

Jeoung Soo Cheon and Jin-A Kim

Abstract. We first show that the semiprimeness, primeness, and re-
ducedness can go up to up-monoid rings. By these results we can com-

pute the lower nilradicals of up-monoid rings, from which the well-known
fact of Amitsur and McCoy for the polynomial rings can be extended to
up-monoid rings.

A monoid G is called a unique product monoid (simply, up-monoid) if given
any two nonempty finite subsets A and B of G there exists at least one c ∈ G
that has a unique representation in the form c = ab with a ∈ A and b ∈ B. A
group is called a up-group if it satisfies the preceding condition. The study of
up-monoids has important roles in group theory and ring theory (see [6], [7] for
more details). Group algebras of up-groups are extensively observed relating to
the zero divisor problem (see [7]). These lead us to study the basic structure of
monoid rings of up-monoids relating to the (semi)primeness and reducedness.
Many other relevant results can be found in [1] and [2].

Throughout this note each ring is associative and possibly without identity.
A ring is called reduced if it has no nonzero nilpotent elements. A ring is called
semiprime if the prime radical is zero. Reduced rings are clearly semiprime
and note that a commutative ring is semiprime if and only if it is reduced.

Let R be a reduced ring. Then with the help of [5] we have that if x1x2 · · ·xn

= 0 for xi ∈ R, then xσ(1)xσ(2) · · ·xσ(n) = 0 for any permutation σ of {1, 2, . . .,
n}. We will use this result freely in the process. The following is obtained by
applying relevant results in [3]. But here we obtain our result through direct
computations, watching what elements are doing.

Theorem 1. Let R be a ring and G a up-monoid. Write S = RG.
(1) R is semiprime if and only if so is S.
(2) R is prime if and only if so is S.
(3) R is reduced if and only if so is S.
(4) R is a domain if and only if so is S.
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Proof. (1) Let R be semiprime. Assume on the contrary that there exists
0 ̸= f =

∑n
i=1 aigi ∈ S satisfying fSf = 0. We can assume that every ai is

nonzero. From fSf = 0, we get fRf = 0. Since G is a up-monoid, there exists
a unique product gigj , obtaining aiRaj = 0. So fRf = 0 implies

0 = airfRairf = (· · ·+airaj−1+airaj+1+· · · )R(· · ·+airaj−1+airaj+1+· · · ),

where r is arbitrary in R.
Set bs = airas and f1 =

∑n1

s=1 bsgs. Then we get f1Rf1 = 0 with f1 = airf .
Assuming f1 = 0 for all r ∈ R, we get aiRai = 0 but this induces a contradiction
since R is semiprime and ai is nonzero (hence aiRai ̸= 0). Thus we have
f1Rf1 = 0 with f1 = airf ̸= 0 for some r ∈ R. We can also assume that every
bs is nonzero. Note n1 < n.

We repeat the preceding computation once more for completeness. Since
G is a up-monoid, there exists a unique product gvgw, obtaining bvRbw = 0.
Thus f1Rf1 = 0 implies

0 = bvxf1Rbvxf1

= (· · ·+ bvxbw−1 + bvxbw+1 + · · · )R(· · ·+ bvxbw−1 + bvxbw+1 + · · · ),

where x is arbitrary in R. Here since R is semiprime and bv ̸= 0, we have
bvRbv ̸= 0 and so f2 = bvxf1 ̸= 0 for some x ∈ R. Letting f2 =

∑n2

t=1 ctgt with
ct ∈ R, we get n2 < n1 < n.

Proceeding in this manner, we finally reach fk = (dgh)R(dgh) = 0 with
0 ̸= d ∈ R and gh ∈ {g1, . . . , gn}, entailing dRd = 0. But since R is semiprime,
we have d = 0, a contradiction. Therefore fSf = 0 implies f = 0.

Next suppose that aRa = 0 for a ∈ R. Then aSa = 0, and so if S is
semiprime, then a = 0.

(2) Let R be prime. Suppose that there exist f =
∑m

i=1 aigi, g =
∑n

j=1 bjhj

∈ S\{0} satisfying fSg = 0. We can assume that ai, bj ∈ R\{0} for all i, j.
From fSg = 0, we get fRg = 0. Since G is a up-monoid, there exists a unique
product gihj , obtaining aiRbj = 0. Then since R is prime, we get ai = 0 or
bj = 0, a contradiction.

Next let aRb = 0 for a, b ∈ R. Then aSb = 0, and so if S is prime, then
a = 0 or b = 0.

(3) It suffices to show the necessity since the reducedness is preserved by
subrings. We apply the proof of (1). Let R be reduced. Assume on the
contrary that there exists 0 ̸= f =

∑n
i=1 aigi ∈ S satisfying f2 = 0. We can

assume that every ai is nonzero. Since G is a up-monoid, there exists a unique
product gigj , obtaining aiaj = 0. Since R is reduced, xy = 0 implies yx = 0
for x, y ∈ R. We will use this fact freely. From aiaj = 0, we get ajai = 0 and
so

0 = aiffai = (· · ·+ aiaj−1 + aiaj+1 + · · · )(· · ·+ aj−1ai + aj+1ai + · · · ).

But since R is reduced, ai ̸= 0 implies a2i ̸= 0 and so aif , fai are both nonzero.
Put f11 = aif and f12 = fai. Note that the number of nonzero terms in f1ℓ,



PRIME RADICALS IN UP-MONOID RINGS 513

say n1ℓ, is less than n for ℓ = 1, 2. Since R is reduced, n11 = n12 and aiaα = 0
⇔ aαai = 0 for α ∈ {1, . . . , n}.

Since G is a up-monoid, there exists a unique product gsgt, obtaining
aiasatai = 0 (here we can assume that aias and atai are both nonzero). Then
aiasat = 0, ataias = 0 since R is reduced, and so

0 = aiasffaias

= (· · ·+ aiasat−1 + aiasat+1 + · · · )(· · ·+ at−1aias + at+1aias + · · · ).

But since R is reduced, aias ̸= 0 implies (aias)
2 ̸= 0 and so aiasf , faias are

both nonzero. Put f21 = aiasf and f22 = faias. Then each f2ℓ is nonzero.
Note that the number of nonzero terms in f2ℓ, say n2ℓ, is less than n1ℓ for
ℓ = 1, 2. Since R is reduced, n21 = n22 and aiasaβ = 0 ⇔ aβaias = 0 for
β ∈ {1, . . . , n}.

Proceeding in this manner, we finally obtain aα1, . . . , aαk ∈ {a1, . . . , an}
such that

0 = aα1 · · · aαkffaα1 · · · aαk with aα1 · · · aαkf, faα1 · · · aαk ∈ R\0.

Say aα1 · · · aαkf = aα1 · · · aαkd for some d ∈ R. In the process, we get
aα1 · · · aαhav = 0 if and only if avaα1 · · · aαh = 0 for each h ≤ k. Whence
we also have

aα1 · · · aαkd = aα1 · · · aαkf = daα1 · · · aαk,
entailing (aα1 · · · aαkd)2 = 0, and so since R is reduced, aα1 · · · aαkd = 0, a
contradiction. Therefore f2 = 0 implies f = 0.

(4) The proof is similar to (2). It suffices to show the necessity since any
subring of a domain is also a domain. Let R be a domain. Suppose that there
exist f =

∑m
i=1 aigi, g =

∑n
j=1 bjhj ∈ S\{0} satisfying fg = 0. We can assume

that ai, bj ∈ R\{0} for all i, j. Since G is a up-monoid, there exists a unique
product gihj , obtaining aibj = 0. Then since R is a domain, we get ai = 0 or
bj = 0, a contradiction. □

Let X be a set of commuting indeterminates over a ring R. It is well-known
that the set of all finite products of indeterminates in X with 1 forms a up-
monoid. So we get the following well-known results for the polynomial rings
from Theorem 1. The polynomial ring with X over R is denoted by R[X].

Corollary 2. (1) [4, Proposition 10.18] A ring R is semiprime if and only if
so is R[X].

(2) [4, Proposition 10.18] A ring R is prime if and only if so is R[X].
(3) A ring R is reduced if and only if so is R[X].
(4) A ring R is a domain if and only if so is R[X].

We next compute the lower nilradicals of the monoid rings. The lower nil-
radical (i.e., prime radical) of a ring A is denoted by N∗(A).

Theorem 3. Let R be a ring and G a up-monoid. Then N∗(RG) = N∗(R)G.
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Proof. We apply the process of Amitsur and McCoy [4, Theorem 10.19]. Let
N = N∗(R). Note RG

NG
∼= R

NG. Since R
NG is semiprime by Theorem 1(1), we

have that NG is a semiprime ideal of RG, entailing N∗(RG) ⊆ NG. For the
converse, let P be a prime ideal of RG. Let Q = P ∩R and suppose aRb ⊆ Q
for a, b ∈ R. Then aRGb ⊆ P and so a ∈ P or b ∈ P (hence a ∈ Q or b ∈ Q),
concluding that Q is a prime ideal of R. Thus QG is a prime ideal of RG by
Theorem 1(2) from RG

QG
∼= R

QG. It then follows

NG ⊆ QG ⊆ P

since Q ⊆ P , obtaining NG ⊆ N∗(RG). □
Corollary 4 ([4, Theorem 10.19] (Amitsur, McCoy)). Let R be a ring. Then
N∗(R[X]) = N∗(R)[X].

Denote the set of all nilpotent elements in a ring A by N(A).

Theorem 5. Let R be a ring and G a up-monoid. Then N∗(R) = N(R) if
and only if N∗(RG) = N(RG).

Proof. N∗(RG) = N∗(R)G by Theorem 3, and so if N∗(RG) = N(RG), then

N(R) = R ∩N(RG) = R ∩N∗(RG) = R ∩N∗(R)G = N∗(R).

Conversely let N(R) = N∗(R). Then by Theorem 3, N∗(RG) = N∗(R)G =
N(R)G. Since R/N(R) is reduced, R

N(R)G
∼= RG

N(R)G is reduced by Theorem

1(3), entailing N(RG) ⊆ N(R)G = N∗(R)G. But by Theorem 3, we get
N(R)G = N∗(R)G = N∗(RG) ⊆ N(RG) and so N∗(RG) = N(RG). □

In the following we can see various kinds of up-groups (hence up-monoids).
The ring of Laurent polynomials in x, coefficients in a ring R, consists of all
formal sums

∑n
i=k mix

i with obvious addition and multiplication, where mi ∈
R and k, n are (possibly negative) integers; denote it by R[x;x−1].

Proposition 6. Let R be a ring and G a group. Then any of the following
rings RG satisfies Theorem 1, Theorem 3, and Theorem 5:

(1) RG = R[x;x−1].
(2) RG when G is right or left ordered group.
(3) RG when G has a normal subgroup H such that both H and G/H are

up-groups.
(4) RG when every finitely generated nonidentity subgroup of G can be

mapped homomorphically onto a nonidentity up-group.
(5) RG when G has a finite subnormal series ⟨1⟩ = G0 ≤ G1 ≤ · · · ≤ Gn = G

such that each Gi+1/Gi is a torsion-free abelian group.
(6) RG when G is a torsion-free nilpotent group.

Proof. (1) G = {. . . , x−2, x−1, 1, x, x2, . . .} is obviously a up-group, and RG =
R[x;x−1]. G in (2) is a up-group by [7, Lemma 13.1.7]. G in (3) and (4) is a
up-group by [7, Lemma 13.1.8]. G in (5) and (6) is a up-group by [7, Lemmas
13.1.6 and 13.1.7]. □
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In Section 2 in [7, Chapter 13], we can find various kinds of (one-sided)
ordered groups.

The upper nilradical (i.e., the sum of all nil ideals) of a ring A is denoted
by N∗(A). Note N∗(A) ⊆ N∗(A) ⊆ N(A).

As contrasted with Theorems 3 and 5, we have negative situations for the
upper nilradicals. With the help of the computations of Smoktunowicz [8], there
exists a ring R with N∗(R) = N(R) but N∗(R[X]) ⫋ N(R[X]) ⫋ N∗(R)[X].
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