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AN EXTENDED SPACE D̂L(S) ASSOCIATED WITH HL(S)

Meehyea Yang

Abstract. Let S be a upper triangular operator such that ML
S : U2 −→

U2 defined by ML
S (F ) = SF is a contraction. Then there exists an unitary

linear system whose state space is the extension space D̃L(S) associated
with HL(S).

1. Introduction

In this paper, we construct the state space of a non-stationary unitary system
using the method developed by de Branges [4, 6]. Let H and C be Hilbert
spaces. A linear system(

A B
C D

)
: H⊕ C −→ H⊕ C

is a matrix of a continuous linear transformation where H is called a state
space and C is called a coefficient space of a linear system. We define that the
transfer function S(z) of a given linear system is of the form

S(z) = D + zC(I − zA)−1B.

The Hardy space is an example of the state space of an unitary linear system
whose transfer function is identically zero.

In the non-stationary case, we consider the Hardy space as the space of
upper triangular Hilbert Schmidt operator, the complex variable as the bilateral
backward shift operator and the constants as diagonal operators. Let l2(C) be
a Hilbert space such that

l2(C) = {f = (f)∞i=−∞ : fi ∈ C and
∞∑

n=−∞
∥fi∥2C < ∞}

with the inner product

⟨f, f⟩l2(C) =
∞∑

n=−∞
∥fi∥2C .
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Denote X by the set of bounded linear operators from l2(C) into itself. Let Z
be the bilateral backward shift operator

(Zf)i = fi+1, i = . . . ,−1, 0, 1, . . . ,

where f = (. . . , f−1, f0, f1, . . .) ∈ l2(C). Then the operator Z is unitary. An ele-
ment A ∈ X can be written by an operator matrix (Aij) with Aij = π∗ZiAZ∗jπ
where the injection π of C into l2(C) is defined by π(c) = (fi)

∞
−∞ in which f0 = c

and fi = 0 for i ̸= 0. Denote by U , L and D the spaces of upper triangular,
lower triangular and diagonal operators respectively:

U = {U ∈ X : Uij = 0, i > j}, L = {L ∈ X : Lij = 0, i < j}, D = U ∩ L.
For any F ∈ U , define a unique sequence of operators F[n] ∈ D, where

(F[n])ii = Fi−n,i such that F =
∑∞

n=0 Z
nF[n]. For A ∈ X , define

A(j) = Z∗jAZj for j = . . . ,−1, 0, 1, . . . ,

and

A[0] = I, A[n+1] = A(A[n])(1) = (AZ∗)nZn for n = 0, 1, . . . .

If rsp(WZ∗) is the spectral radius of WZ∗,

lW = lim
n↑∞

∥W [n]∥1/n = lim
n↑∞

∥W {n}∥1/n = rsp(WZ∗) = rsp(Z
∗W )

holds for W ∈ X (See [2]). If W ∈ D, the condition lW < 1 guarantees that
the operator left transform for U

F∧(W ) =

∞∑
n=0

W [n]F[n],

and the operator right transform for U

F△(W ) =

∞∑
n=0

ZnF[n](Z
∗W )n

are convergent. We set

Ω = {W ∈ D : lW < 1 }.
Let G ∈ L. Then G =

∑∞
n=0 G[n]Z

∗n. For W ∈ Ω, define

G∨(W ) =
∞∑

n=0

G[n]Z
∗n(ZW )n

to be the right transform for L and by

G∇(W ) =
∞∑

n=0

(WZ)nG[n]Z
∗n

the left transform for L. Then we have

F∧(W ∗)∗ = F ∗∨(W ) and F△(W ∗)∗ = F ∗∇(W ).
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In [1], Alpay shows that for F ∈ U , D ∈ D and W ∈ Ω, the operator
(Z − W )−1(F − D) belongs to U if and only if D = F∧(W ) and the oper-
ator (F − D)(Z − W )−1 belongs to U if and only if D = F△(W ). Therefore
the operators F∧(W ) and F△(W ) are considered as the point evaluation of an
analytic function in the open unit disk.

An operator A = (Aij) ∈ X is called to be a Hilbert-Schmidt operator if
all the entries Aij are Hilbert-Schmidt operators on C and

∑∞
i,j=0 TrA

∗
ijAij is

finite where Tr stands for the operator trace. The set of all Hilbert-Schmidt
operators denoted by X2 is a Hilbert space with the inner product

⟨F, G⟩HS =
∑
ij

TrG∗
ijFij = TrG∗F.

Let

U2 = U ∩ X2, L2 = L ∩ X2, D2 = U2 ∩ L2.

Then these spaces are reproducing kernel spaces in the sense of the following
statements.

Let H be a closed subspace of U2. The space H is called to be a reproducing
kernel Hilbert space if for W ∈ Ω, there exists an operator KW in U such that

1. KWE ∈ H,
2. ⟨F, KWE⟩HS = TrD∗F∧(W ) for any E ∈ D2, any W ∈ Ω.

In this case the operator KW is called the reproducing function for the space
H.

Define ρW = 1− ZW ∗ for W ∈ Ω. Then ρ−1
W ∈ U2 and

⟨F, ρ−1
W E⟩HS = TrE∗F∧(W )

for any E ∈ D2. Hence ρ−1
W is a reproducing kernel for U2. Moreover, the set

of all such ρ−1
W E is dense in U2.

2. The space HL(S)

In this section, we review the state space of a coisometric linear system
which is constructed by Alpay and Peretz [3]. The following complementation
theorem given by de Branges [5] is the main tool for the construction of the
state space.

Theorem 2.1. Let P be a contractive self-adjoint transformation of a Hilbert
space H into itself. Then there are unique Hilbert spaces P and Q which are
contained contractively and continuously in H such that P is the adjoint of
the inclusion of P in H and 1 − P is the adjoint of the inclusion of Q in H.
Moreover, the inequality

⟨c, c⟩H ≤ ⟨a, a⟩P + ⟨b, b⟩Q
holds whenever c = a + b with a ∈ P and b ∈ Q and every element c ∈ H
admits some such decomposition for which equality holds.
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The space Q is called the complementary space of P in H.
Throughout this paper, assume that S is an upper triangular operator such

that ML
S : U2 −→ U2 defined by ML

S (F ) = SF is a contraction.
Let

kL(F ) = sup
G∈U2

{∥F + SG∥2U2
− ∥G∥2U2

}

and let HL(S) be the set of all F ∈ U2 where kL(F ) is finite. Then by Theorem
2.1, HL(S) is a Hilbert space with the inner product ∥F∥2HL(S) = kL(F ).

For W ∈ Ω and E ∈ D2, we have

ML∗

S (ρ−1
W E) = S∧(W )∗ρ−1

W E.

So the reproducing kernel function KL
S (·,W ) of the space HL(S) is given by

KL
S (·,W ) = (I − SS∧(W )∗)ρ−1

W .

For F ∈ HL(S) and E ∈ D2, the operators (F − F[0])Z
−1 and (S − S[0])EZ−1

belongs to HL(S) and

∥(F − F[0])Z
−1∥HL(S) ≤ ∥F∥HL(S).

Therefore, there is a conjugate isometric linear system whose state space is
HL(S).

Theorem 2.2. A linear system(
AL BL

CL DL

)
:

(
HL(S)
D2

)
→
(

HL(S)
D2

)
(2.1)

defined by

AL(F ) = (F − F[0])Z
−1,

BL(E) = (S − S[0])EZ−1,

CL(F ) = F[0],

and DL(E) = S[0]E,

is unitary.

We have same argument for S∗. Since ML
S∗ : L2 −→ L2 defined by ML

S∗(H)
= S∗H is also contractive, the Hilbert space HL(S

∗) exists which is the state
space of a conjugate isometric linear system(

ÃL B̃L

C̃L D̃L

)
:

(
HL(S

∗)
D2

)
→
(

HL(S
∗)

D2

)
,

where

ÃL(H) = (H −H[0])Z,

B̃L(E) = (S∗ − S∗
[0])EZ,

C̃L(H) = H[0],

and D̃L(E) = S∗
[0]E.
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The associated reproducing kernel function for HL(S
∗) is

KL
S∗(·,W ) = [I − S∗S∇(W )∗]ρ∇−1

W .

The following theorem will be used to construct the state space of a unitary
linear system (see [3, Lemmas 6.1 and 6.2]).

Theorem 2.3. If E ∈ D2 and W ∈ Ω, then the operator

(S − S△(W ))(Z −W )−1E

belongs to HL(S) and the operator

(S∗ − S∗∨(W ))(Z∗ −W ∗)−1E

belongs to HL(S
∗).

Similar argument can be made when the operator MR
S : U2 −→ U2 defined

by MR
S (F ) = FS is contractive. In this case, the reproducing kernel function

KR
S (·,W ) of the state space HR(S) of a conjugate isometric linear system is

KR
S (·,W ) = ρ△−1

W (1− S△(W )∗S).

3. The extension space D̂L(S) associated with HL(S)

From Theorem 2.3, the operator

KL
S (·,W )E + (S − S△(W ))(Z −W )−1G−1

belongs to HL(S) and the operator

(S∗ − S∗∨(W ))(Z∗ −W ∗)−1E(1) +KL
S∗(·,W ∗)G

belongs to HL(S
∗) for E ∈ D2 and W ∈ Ω. In [3], Alpay and Peretz have

shown that there is a Hilbert space DL(S) which is the state space of a unitary
linear system and whose reproducing kernel function is DL

S (·,W ) where the
operator DL

S (·,W ) : D2 ⊕D2 −→ HL(S)⊕HL(S
∗) is defined by

DL
S (·,W )

(
E
G

)
(3.1)

=

(
KL

S (·,W )E + (S − S△(W ))(Z −W )−1G(−1)

(S∗ − S∗∨(W ∗))(Z∗ −W ∗)−1E(1) +KL
S∗(·,W ∗)G

)
.

The space DL(S) is contained continuously in HL(S)⊕HL(S
∗).

Now let us construct the extension space D̂L(S) associated withHL(S) using
the method introduced by de Branges [4].

Let F ∈ HL(S) and A∗
L(F ) = P . Since the linear system (2.1) is a unitary,

the identities

ALA
∗
L(F ) +BLB

∗
L(F ) = F

and

CLA
∗
L(F ) +DLB

∗
L(F ) = 0
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hold. Then we have

F = (P − P[0])Z
−1 + (S − S[0])B

∗
L(F )Z−1

and

P[0] + S[0]B
∗
L(F ) = 0.

Hence

A∗
L(F ) = FZ − SB∗

L(F ).

Set

F0 = F, Fn = A∗
L(Fn−1), Hn−1 = B∗

L(Fn−1), n ≥ 1.

Then

Fn = Fn−1Z − SHn−1 = FZn − S(H0Z
n−1 + · · ·+Hn−1)

belongs to HL(S) and

∥Fn∥2HL(S) = ⟨A∗
LFn−1, A

∗
LFn−1⟩HL(S)

= ⟨(I −BLB
∗
L)Fn−1, Fn−1⟩HL(S)

= ∥Fn−1∥2HL(S) − ∥Hn−1∥2D2
.

Therefore, we have

∥Fn∥2HL(S) = ∥F∥2HL(S) −
n−1∑
i=0

∥Hi∥2D2
.(3.2)

Let the extension space D̂L(S) associated with HL(S) be the set of pairs (F,H)
where F (z) ∈ HL(S) and H(z) =

∑∞
n=0 HnZ

∗n such that

FZn − S(H0Z
n−1 + · · ·+Hn−1) ∈ HL(S)

and the sequence

∥FZn − S(H0Z
n−1 + · · ·+Hn−1)∥2HL(S) +

n−1∑
i=0

∥Hi∥2D2

is finite for every nonnegative integer n. Then D̂L(S) becomes a Hilbert space
with the inner product

∥(F,H)∥D̂L(S)(3.3)

= lim
n→∞

(
∥FZn − S(H0Z

n−1 + · · ·+Hn−1)∥2HL(S) +
n−1∑
i=0

∥Hi∥2D2

)
.

From (3.2) and (3.3), we have

(3.4) ∥(F,H)∥D̂L(S) = ∥F∥HL(S).

Now, we can construct a unitary linear system.
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Theorem 3.1. The extension space D̂L(S) associated with HL(S) is the state
space of a unitary linear system which is defined by

(3.5)

(
αL βL

γL δL

)
:

(
D̂L(S)
D2

)
→
(

D̂L(S)
D2

)
,

where

αL((F,H)) = ((F − F[0])Z
−1,HZ−1 − S∗F[0]),

βL(E) = ((S − S[0])EZ−1, (I − S∗S[0])E),

γL((F,H)) = F[0],

and δL(E) = S[0]E.

Proof. Let E ∈ D2 and (F,H) ∈ D̂L(S). Construct linear system using (2.1)
and (3.4). First show that

((I − SS∗
[0])E, (S∗ − S∗

[0])EZ) ∈ D̂L(S).

Since

B∗((I − SS∗
[0])E) = B∗(KL

S (·, 0))

= Z∗((S − S[0])Z
−1)∧(0)∗EZ

= Z∗(ZS[1]Z
∗)∗EZ

= S∗
[1]Z

∗EZ,

the operator

(I − SS∗
[0])EZ − SS∗

[1]Z
∗EZ = (I − SS∗

[0])EZ − SS∗
[1]Z

∗EZ

belongs to HL(S). From S =
∑∞

n=0 Z
nS[n],

⟨SF,EZk⟩U2 = TrZ∗kE∗
∞∑

n=0

ZnS[n]F

=

k∑
n=0

TrZ∗kE∗ZnS[n]F

= ⟨F,
k∑

n=0

S∗
[n]Z

∗nEZk⟩U2 .

Hence

(3.6) (I − S
k∑

n=0

S∗
[n]Z

∗n)EZk ∈ HL(S).

It implies that

((I − SS∗
[0])E, (S∗ − S∗

[0])EZ) ∈ D̂L(S).

Hence if we define

βL(E) = ((S − S[0])EZ−1, (I − S∗S[0])E),
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then we have β∗
L((F,H)) = H[0]. Now define γL((F,H)) = F[0]. Let P =

(S − S[0])EZ−1 and Q = (I − S∗S[0])E. If we write Q =
∑∞

n=0 QnZ
∗n, then

Q0 = (I − S∗
[0]S[0])E and Qn = S∗

[n]Z
∗nS[0]EZn for each positive integer n.

Then

PZk+1 − S

k∑
n=0

QnZ
k−n

= (S − S[0])EZk − S(I − S∗
[0]S[0])EZk − S

k∑
n=1

S∗
[n]Z

∗nS[0]EZnZk−n

= − (I − S
k∑

n=0

S∗
[n]Z

∗n)S[0]EZk

belongs to HL(S) by (3.6). Therefore

((S − S[0])EZ−1, (I − S∗S[0])E) ∈ D̂L(S).

Hence
γ∗
L(E) = ((I − SS∗

[0])E, (S∗ − S∗
[0])EZ).

Now we claim that

((F − F[0])Z
−1,HZ−1 − S∗F[0]) ∈ D̂L(S).

Let P = (F − F[0])Z
−1 and Q = HZ−1 − S∗F[0]. The identities

PZ − SQ[0] = F − (I − SS∗
[0])F[0]

and
(Q−Q[0])Z = H − (S∗ − S∗

[0])F[0]Z

imply that (PZ−SQ[0], [Q−Q[0]]Z) ∈ D̂L(S). Hence (P,Q) ∈ D̂L(S) so define

αL((F,H)) = ((F − F[0])Z
−1, HZ−1 − S∗F[0]).

Then by the construction of the space D̂L(S),

(FZ − SH[0], (H −H[0])Z) ∈ D̂L(S)

so we have
α∗
L((F,H)) = (FZ − SH[0], (H −H[0])Z).

Hence the linear system(
αL βL

γL δL

)
:

(
D̂L(S)
D2

)
→
(

D̂L(S)
D2

)
defined by

αL((F,H)) = ((F − F[0])Z
−1, HZ−1 − S∗F[0]),

βL(E) = ((S − S[0])EZ−1, (I − S∗S[0])E),

γL((F,H)) = F[0], and

δL(E) = S[0]E,
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is unitary. □

The following theorem shows that the reproducing kernel function (3.1) of

the space DL(S) is an element of the extension space D̂L(S) associated with
HL(S).

Theorem 3.2. If E,G ∈ D2 and W ∈ Ω, then

(KL
S (·,W )E, (S∗ − S∗∨(W ))(Z∗ −W ∗)−1E(1))

and

((S − S△(W ))(Z −W )−1G(−1), KL
S∗(·,W ∗)G)

belong to D̂L(S).

Proof. Since the identity

⟨SF, ρ−1
W EZk⟩U2 =

∞∑
n=0

⟨SF, (ZW ∗)nEZk⟩U2

=
∞∑

n=0

TrZ∗kE∗(WZ∗)nSF

=
∞∑

n=0

∞∑
i=0

TrZ∗kE∗(WZ∗)nZiS[i]F

=
∞∑

n=0

n+k∑
i=0

TrZ∗kE∗(WZ∗)nZiS[i]F

= ⟨F,
∞∑

n=0

(
n+k∑
i=0

S∗
[i]Z

∗i)(ZW ∗)nEZk⟩U2

holds for F ∈ U2 and E ∈ D2,

ρ−1
W EZk − S

∞∑
n=0

n+k∑
i=0

S∗
[i]Z

∗i(ZW ∗)nEZk

belongs to HL(S). From

KL
S (·,W )E = (I − SS∧(W )∗)ρ−1

W E

= ρ−1
W E − S

∞∑
n=0

(
n∑

i=0

S∗
[i]Z

∗i)(ZW ∗)nE,

we have

ρ−1
W EZk − S

∞∑
n=0

(
n+k∑
i=0

S∗
[i]Z

∗i)(ZW ∗)nEZk

= KL
S (·,W )EZk − S

∞∑
n=0

(

k∑
i=1

S∗
[n+i]Z

∗n+i)(ZW ∗)nEZk
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= KL
S (·,W )EZk − S

k∑
i=1

(

∞∑
n=0

S∗
[n+i]Z

∗n+i(ZW ∗)n)EZiZk−1.

Since

(S∗ − S∗∨(W ))(Z∗ −W ∗)−1E(1) =
∞∑

n=0

S∗
[n]Z

∗n[I − (ZW ∗)n]ρ−1
W EZ

=
∞∑

n=1

S∗
[n]Z

∗n
n−1∑
k=0

(ZW ∗)kEZ

=
∞∑
i=1

(
∞∑

n=0

S∗
[n+i]Z

∗n+i(ZW ∗)n)EZiZ∗i−1,

(KL
S (·,W )E, (S∗ − S∗∨(W ))(Z∗ −W ∗)−1E(1)) belongs to ∈ D̂L(S).
Now find H =

∑∞
n=0 H[n]Z

∗n so that

((S − S△(W ))(Z −W )−1ZEZ∗,H) ∈ D̂L(S).

We can express (S − S△(W ))(Z −W )−1E(1) as a power series

(S − S△(W ))(Z −W )−1E(1) =
∞∑

n=1

ZnS[n]

n−1∑
k=0

(Z∗W )kEZ∗

= (ZS[1] + Z2S[2] + · · · )EZ∗

+ (Z2S[2] + Z3S[3] + · · · )Z∗WEZ∗

+ (Z3S[3] + Z4S[4] + · · · )(Z∗W )2EZ∗

+ · · · .

Hence if we set

Sn = (S − S[0])(Z
∗W )nEZn−1 = BL((Z

∗W )nEZn),(3.7)

then

(S − S△(W ))(Z −W )−1E(1) =
∞∑

n=0

An
LSn.(3.8)

Hence we have

H[k] =
∞∑

n=0

B∗
LA

∗k
L An

L(Sn).

Now show that

H = KL
S∗(·,W ∗)E.

Since
(
AL BL

CL DL

)
is unitary, for k, n ≥ 1, we have

B∗
LA

∗k
L An

L(Sn) = B∗
LA

∗k−1
L An−1

L Sn −B∗
LA

k−1
L C∗

LCLA
n−1
L (Sn)

= · · ·



AN EXTENDED SPACE D̂L(S) ASSOCIATED WITH HL(S) 491

= B∗
LA

∗k−j
L An−j

L (Sn)−
j∑

i=1

B∗
LA

∗k−i
L C∗

LCLA
n−i
L (Sn)

and
B∗

LA
n
L(Sn) = D∗

LCLA
n−1
L (Sn) = S∗

[0]Z
nSn(Z

∗W )nE.

From
((S − S[0])EZ−1, (I − S∗S[0])E) ∈ DL(S),

B∗
LA

∗k
L Sn =

{
−S∗

[k]Z
∗kS[0](Z

∗W )nEZn+k if k ≥ 1

[I − S∗
[0]S[0]](Z

∗W )nEZn if k = 0.

Hence we have

H[0] = E − S∗
[0]S[0]E −

∞∑
n=1

S∗
[0]Z

nSn(Z
∗W )nE = (1− S∗

[0]S
△(W ))E.

From
((I − SS∗

[0])E, (S∗ − S∗
[0])EZ) ∈ D̂L(S)

and
CLA

j
L(Sn) = Zj+1S[j+1](Z

∗W )nEZn−j−1,

we have

B∗
LA

∗i
LC∗

LCLA
j
L(Sn) = S∗

[i+1]Z
∗(i−j)S[j+1](Z

∗W )nEZn−j+i.

So for nonnegative integers k and n,

B∗
LA

∗k
L An

L(Sn)

becomes

−S∗
[k−n]Z

∗(k−n)S[0](Z
∗W )nEZk −

n−1∑
i=0

S∗
[k−i]Z

∗(k−n)S[n−i](Z
∗W )nEZk

if k > n,

(1− S∗
[0]S[0])(Z

∗W )kEZk −
k−1∑
i=0

S∗
[k−i]S[k−i](Z

∗W )kEZk

if k = n and

−S∗
[0]Z

n−kS[n−k](Z
∗W )nEZk −

k−1∑
i=0

S∗
[k−i]Z

∗(k−n)S[n−i](Z
∗W )nEZk

for k < n. Hence we get

H[k] =

∞∑
n=0

B∗
LA

∗k
L An

L(Sn)

= (Z∗W )kZk −
k∑

i=0

S∗
[i]Z

iS△(W )(Z∗W )k−iEZk
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for k ≥ 1 which implies that

H = [I − S∗S△(W )](I − Z∗W )−1E = KL
S∗(·,W ∗)E.

Hence

((S − S△(W ))(Z −W )−1G(−1),KL
S∗(·,W ∗)G) ∈ D̂L(S). □

We can also define the extension space D̂L(S
∗) associated with HL(S

∗). The

extension space D̂L(S
∗) associated with HL(S

∗) is the set of pairs (H,F ) where
H(z) ∈ HL(S

∗) and F (z) =
∑∞

n=0 Z
nFn for which

HZ∗n − S(F0Z
∗n−1 + · · ·+ Fn−1) ∈ HL(S

∗),

where Fn−1 = B̃∗
LÂ

∗n−1
L H and

∥Hn∥2HL(S∗) +

n−1∑
i=0

∥Fi∥2D2

is finite for every nonnegative integer n. The extension space D̂L(S
∗) associated

with HL(S
∗) is a Hilbert space with inner product

∥(H,F )∥D̂L(S∗)

= lim
n→∞

[
∥HZ∗n − S(F0Z

∗n−1 + · · ·+ Fn−1)∥2HL(S∗) +
n−1∑
i=0

∥Fi∥2D2

]
.

Corollary 3.3. The extension space D̂L(S
∗) associated with HL(S

∗) exists

and the transformation of D̂L(S) into D̂L(S
∗) which maps (F,H) into (H,F )

is an isometry.

Proof. Let (F,H) be an element of D̂L(S) and G ∈ D2. From (3.7) and (3.8),
we have

⟨F, (S − S△(W ))(Z −W )−1G(−1)⟩HL(S) =
∞∑

n=0

⟨B∗
LA

∗n
L F, (Z∗W )nGZn⟩D2

= ⟨H,
∞∑

n=0

(Z∗W )nG⟩L2

= ⟨H, ρ∇−1
W∗ G⟩L2

= ⟨H,KL
S∗(·,W ∗)G⟩HL(S∗).

Hence we have

∥(F,H)∥D̂L(S) = ∥(H,F )∥D̂L(S∗). □
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