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ANTI-PERIODIC SOLUTIONS FOR HIGHER-ORDER

LIÉNARD TYPE DIFFERENTIAL EQUATION WITH

p-LAPLACIAN OPERATOR

Taiyong Chen and Wenbin Liu

Abstract. In this paper, by using degree theory, we consider a kind of
higher-order Liénard type p-Laplacian differential equation as follows

(ϕp(x
(m)))(m) + f(x)x′ + g(t, x) = e(t).

Some new results on the existence of anti-periodic solutions for above
equation are obtained.

1. Introduction

Anti-periodic problems arise from the mathematical models of various of
physical processes (see [2, 11]), and also appear in the study of partial dif-
ferential equations and abstract differential equations (see [3, 17, 19]). For
instance, electron beam focusing system in travelling-wave tube’s theories is an
anti-periodic problem (see [15]).

During the past twenty years, anti-periodic problems had been studied ex-
tensively by numerous scholars. For example, for first-order ordinary differen-
tial equations, a Massera’s type criterion was presented in [5] and the validity
of the monotone iterative technique was shown in [22]. Moreover, for higher-
order ordinary differential equations, the existence of anti-periodic solutions
was considered in [1, 6, 13-14]. Recently, the existence results were extended
to anti-periodic boundary value problems for impulsive differential equations
(see [16]), and anti-periodic wavelets were discussed in [4].

It is well known that higher-order p-Laplacian differential equations are de-
rived from many fields, such as fluid mechanics and nonlinear elastic mechanics.

In the past few decades, many important results on higher-order p-Laplacian
differential equations with certain boundary conditions had been obtained. We
refer the readers to [12, 18, 20-21] and the references cited therein. However,
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to the best of our knowledge, there is no paper concerned with the existence
of anti-periodic solutions for higher-order p-Laplacian differential equations up
until now. Moreover, the existence of anti-periodic solutions plays a key role in
characterizing the behavior of nonlinear differential equations (see [7]). Thus, it
is worthwhile to continue to investigate the existence of anti-periodic solutions
for higher-order p-Laplacian differential equations.

In the present paper, motivated by the papers mentioned above, we aim at
studying the existence of anti-periodic solutions for the following higher-order
Liénard type p-Laplacian differential equation

(ϕp(x
(m)))(m) + f(x)x′ + g(t, x) = e(t),(1.1)

where p > 1 is a constant, m ≥ 2 is an integer, ϕp(s) = |s|p−2s; f, e ∈
C(R,R), g ∈ C(R2,R) with f(−x) ≡ f(x), g(t+π,−x) ≡ −g(t, x), e(t+π) ≡
−e(t). That is, we will prove that Eq.(1.1) has at least one solution x(t)
satisfying

x(t+ π) = −x(t) for all t ∈ R.

Obviously, the inverse operator of ϕp is ϕq, where q > 1 is a constant such that
1
p + 1

q = 1.

Notice that, when p = 2, the nonlinear operator (ϕp(x
(m)))(m) reduces to the

linear operator x(2m). On the other hand, x(t) is also a 2π-periodic solution
of Eq.(1.1) if x(t) is a π-anti-periodic solution of Eq.(1.1). Hence, from the
arguments in this paper, we can also obtain the existence results of periodic
solutions for above equation.

The rest of this paper is organized as follows. Section 2 contains some neces-
sary preliminaries. In Section 3, some sufficient conditions for the existence of
anti-periodic solutions of Eq.(1.1) are established, and two existence results of
anti-periodic solutions for Eq.(1.1) are obtained. Finally, in Section 4, some ex-
plicit examples are given to illustrate the main results. Our results are different
from those of bibliographies listed above.

2. Preliminaries

For the sake of convenience, we set

Ck
2π = {x ∈ Ck(R,R) : x(t+ 2π) ≡ x(t)}, k ∈ {0, 1, . . .}

with the norm

∥x∥Ck = max
i∈{0,1,...,k}

{∥x(i)∥0},

where ∥x∥0 = maxt∈[0,2π] |x(t)|, and

Ck
π = {x ∈ Ck

2π : x(t+ π) ≡ −x(t)}

with the norm ∥ · ∥Ck . Besides, we denote the norm in Lp([0, 2π],R) by ∥ · ∥p.
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For each x ∈ C0
π, there exists the following Fourier series expansion

x(t) =

∞∑
i=0

[a2i+1 cos(2i+ 1)t+ b2i+1 sin(2i+ 1)t],

where a2i+1, b2i+1 ∈ R. Let us define the mapping J : C0
π −→ C1

π by

(Jx)(t) =

∫ t

0

x(s)ds−
∞∑
i=0

b2i+1

2i+ 1

=

∞∑
i=0

[
a2i+1

2i+ 1
sin(2i+ 1)t− b2i+1

2i+ 1
cos(2i+ 1)t

]
for all t ∈ R.

It is easy to prove that the mapping J is completely continuous by using Arzelá-
Ascoli theorem.

Define the operator Lp : D(Lp) ⊂ C1
π −→ L1([0, 2π],R) by

(Lpx)(t) = (ϕp(x
(m)(t)))(m) for all t ∈ R,

where

D(Lp) = {x ∈ C2m−1
π : (ϕp(x

(m)(t)))(m−1) is absolutely continuous on R}.

Let N : C1
π −→ L1([0, 2π],R) be the Nemytskii operator

(Nx)(t) = −f(x(t))x′(t)− g(t, x(t)) + e(t) for all t ∈ R.

Obviously, the operator Lp is invertible and the anti-periodic problem of Eq.
(1.1) is equivalent to the abstract equation

Lpx = Nx, x ∈ D(Lp).

Next, we introduce a Wirtinger inequality (see [8]) and a continuation the-
orem (see [9-10]) as follows.

Lemma 2.1 (Wirtinger Inequality). For each x ∈ W 1,p([0, 2π],R) such that

x(0) = x(2π) and
∫ 2π

0
|x(t)|p−2x(t)dt = 0, one has

λ1∥x∥pp ≤ ∥x′∥pp,

where

λ1 =
(πp

π

)p

, πp =
2π(p− 1)

1
p

p sin π
p

.

Lemma 2.2 (Continuation Theorem). Let Ω be open bounded in a linear nor-
mal space X. Suppose that f is a completely continuous field on Ω. Moreover,
assume that the Leray-Schauder degree

deg(f,Ω, p) ̸= 0 for p ∈ X\f(∂Ω).

Then the equation f(x) = p has at least one solution in Ω.
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3. Existence of anti-periodic solutions

In this section, some existence results of anti-periodic solutions for Eq.(1.1)
will be given.

Theorem 3.1. Assume that
(H1) there exist non-negative functions α1, β1 ∈ C(R,R+) such that

|g(t, x)| ≤ α1(t)|x|p−1 + β1(t) for all t, x ∈ R.

Then Eq.(1.1) has at least one anti-periodic solution, provided with ∥α1∥0λ−m
1

< 1.

For making use of Leray-Schauder degree theory to prove the existence of
anti-periodic solutions for Eq.(1.1), we consider the homotopic equation of
Eq.(1.1) as follows

(3.1) (ϕp(x
(m)))(m) = −λf(x)x′ − λg(t, x) + λe(t), λ ∈ [0, 1].

We begin with a lemma below.

Lemma 3.1. Suppose that the conditions of Theorem 3.1 hold. Then, for the
possible anti-periodic solution x(t) of Eq.(3.1), there exists a prior bounds in
C1

π, i.e., x(t) satisfies

∥x∥C1 ≤ T,

where T is a positive constant independent of λ.

Proof. Multiplying the both sides of Eq.(3.1) with x(t) and integrating it over
[0, 2π], we get∫ 2π

0

(ϕp(x
(m)(t)))(m)x(t)dt = − λ

∫ 2π

0

f(x(t))x′(t)x(t)dt

− λ

∫ 2π

0

g(t, x(t))x(t)dt+ λ

∫ 2π

0

e(t)x(t)dt.

Noting ∫ 2π

0

(ϕp(x
(m)(t)))(m)x(t)dt = (−1)m

∫ 2π

0

|x(m)(t)|pdt

and ∫ 2π

0

f(x(t))x′(t)x(t)dt = 0,

we have∫ 2π

0

|x(m)(t)|pdt = (−1)m+1λ

∫ 2π

0

g(t, x(t))x(t)dt+ (−1)mλ

∫ 2π

0

e(t)x(t)dt,

which together with hypothesis (H1) yields that∫ 2π

0

|x(m)(t)|pdt ≤ ∥α1∥0
∫ 2π

0

|x(t)|pdt+ (∥β1∥0 + ∥e∥0)
∫ 2π

0

|x(t)|dt.
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That is

(3.2) ∥x(m)∥pp ≤ ∥α1∥0∥x∥pp +K1∥x∥p,

where K1 = (∥β1∥0 + ∥e∥0)(2π)
1
q .

For each x ∈ C2m−1
π , we get

(3.3)

∫ 2π

0

x(i)(t)dt =

∫ π

0

x(i)(t)dt+

∫ π

0

x(i)(t+ π)dt = 0, i ∈ {0, 1}.

Similarly, we obtain

(3.4)

∫ 2π

0

|x(j)(t)|p−2x(j)(t)dt = 0, j ∈ {0, 1, . . . ,m− 1}.

Basing on Lemma 2.1, it can be shown from (3.4) that

(3.5) ∥x∥p ≤ λ
− 1

p

1 ∥x′∥p ≤ · · · ≤ λ
−m

p

1 ∥x(m)∥p.

Thus, from (3.2), we have

∥x(m)∥pp ≤ ∥α1∥0λ−m
1 ∥x(m)∥pp +K1λ

−m
p

1 ∥x(m)∥p.

In view of p > 1 and ∥α1∥0λ−m
1 < 1, we can see that there is a non-negative

constant K2 independent of λ such that

(3.6) ∥x(m)∥p ≤ K2.

So it follows from (3.5) and (3.6) that

(3.7) ∥x(i)∥p ≤ K2λ
i−m

p

1 , i ∈ {0, 1, . . . ,m}.

By (3.3), there exist t1, t2 ∈ [0, 2π] such that x(t1) = x′(t2) = 0. Hence,
(3.7) yields

(3.8) ∥x∥0 ≤
∫ 2π

0

|x′(t)|dt ≤ (2π)
1
q ∥x′∥p ≤ K2(2π)

1
q λ

1−m
p

1 := K3.

By a similar way as the proof of (3.8), we can prove that

(3.9) ∥x′∥0 ≤ K4,

where K4 = K2(2π)
1
q λ

2−m
p

1 . Let T = max{K3,K4}, combining (3.8) with (3.9)
we have

∥x∥C1 ≤ T.

The proof is complete. □

Now we give the proof of Theorem 3.1.
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Proof of Theorem 3.1. Setting

Ω = {x ∈ C1
π : ∥x∥C1 < T + 1}.

Clearly, the set Ω is a open bounded set in C1
π and zero element θ ∈ Ω.

From the definition of operator N , it is easy to see that

(Nx)(t+ π) ≡ −(Nx)(t) for all x ∈ C1
π.

Hence, the operator N sends C1
π into C0

π. Let us define the operator Fλ : Ω −→
C1

π by

Fλx = JmϕqJ
mλNx = ϕq(λ)L

−1
p Nx, λ ∈ [0, 1].

Obviously, the operator Fλ is completely continuous in Ω and the fixed points
of operator F1 are the anti-periodic solutions of Eq.(1.1).

With this in mind, let us define the completely continuous field hλ(x) :
Ω× [0, 1] −→ C1

π by

hλ(x) = x− Fλx.

By Lemma 3.1, we get that zero element θ /∈ hλ(∂Ω) for all λ ∈ [0, 1]. So that,
the following Leray-Schauder degrees are well defined and

deg(id− F1,Ω, θ) = deg(h1,Ω, θ) = deg(h0,Ω, θ)

= deg(id,Ω, θ) = 1 ̸= 0.

Consequently, the operator F1 has at least one fixed point in Ω by using
Lemma 2.2. Namely, Eq.(1.1) has at least one anti-periodic solution. The
proof is complete. □

Theorem 3.2. Assume that g(t, x) has the decomposition

g(t, x) = u(t, x) + v(t, x)

such that
(H2) there exist non-negative constants γ, n with n > p, such that

(−1)mxu(t, x) ≥ γ|x|n for all t, x ∈ R;
(H3) there are non-negative functions α2, β2 ∈ C(R,R+) such that

|v(t, x)| ≤ α2(t)|x|n−1 + β2(t) for all t, x ∈ R.
Then Eq.(1.1) has at least one anti-periodic solution, provided with ∥α2∥0−γ ≤
0.

Proof. Multiplying the both sides of Eq.(3.1) with x(t) and integrating it over
[0, 2π], we get∫ 2π

0

|x(m)(t)|pdt = (−1)m+1λ

∫ 2π

0

[u(t, x(t)) + v(t, x(t))]x(t)dt

+ (−1)mλ

∫ 2π

0

e(t)x(t)dt.(3.10)
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By assumption (H2), we have

(−1)m+1λ

∫ 2π

0

u(t, x(t))x(t)dt ≤ −λγ

∫ 2π

0

|x(t)|ndt,

which together with (3.10) and hypothesis (H3) yields that∫ 2π

0

|x(m)(t)|pdt ≤ λ(∥α2∥0 − γ)

∫ 2π

0

|x(t)|ndt+ (∥β2∥0 + ∥e∥0)
∫ 2π

0

|x(t)|dt.

From ∥α2∥0 − γ ≤ 0, we obtain∫ 2π

0

|x(m)(t)|pdt ≤ (∥β2∥0 + ∥e∥0)
∫ 2π

0

|x(t)|dt.

That is

∥x(m)∥pp ≤ K5∥x∥p,(3.11)

where K5 = (∥β2∥0 + ∥e∥0)(2π)
1
q .

Thus, from (3.5) and (3.11), we have

∥x(m)∥pp ≤ K5λ
−m

p

1 ∥x(m)∥p.
In view of p > 1, we can see that there is a non-negative constant K6 indepen-
dent of λ such that

∥x(m)∥p ≤ K6.

The remainder of the proof works are quite similar to the proof of Theorem
3.1, so we omit the details. The proof is complete. □

Remark. Assumption (H2), (H3) and inequality ∥α2∥0 − γ ≤ 0 guarantee that
the degree with respect to x of g(t, x) is allowed to be greater than p−1, which
is different from the hypothesis (H1) of Theorem 3.1.

4. Examples

In this section, we will give some examples to illustrate our main results.
Consider the following fourth-order differential equation with p-Laplacian

operator

(ϕ4(x
′′))′′ + x2x′ + g(t, x) = cos t,(4.1)

where
p = 4, m = 2, f(x) = x2, e(t) = cos t.

By direct calculation, we can get λ1 = 3
4 .

Example 4.1. Let

g(t, x) =
1

2
sin2 t · x3.

We choose

α1(t) =
1

2
, β1(t) = 1.
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Then the conditions of Theorem 3.1 are all satisfied, thus Eq.(4.1) has at least
one anti-periodic solution.

Example 4.2. Let

g(t, x) = x5 +
4

5
sin2 t · x5,

where

u(t, x) = x5, v(t, x) =
4

5
sin2 t · x5.

We choose

n = 6, γ =
9

10
, α2(t) =

4

5
, β2(t) = 1.

It is easy to check that Eq.(4.1) satisfies all the conditions of Theorem 3.2, so
it has at least one anti-periodic solution.
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