References
- Hench L. L., "Bioceramics," J. Am. Ceram. Soc., 81 [8] 1705-28 (1998).
- Donald W., and Turner J. T. M., "Antigenicity of Freezedried Bone Ailograft in Periodontal Osseous Defects," J. Periodontal Res., 16 [1] 89 - 99 (2006).
- Shegarfi H., "Review Article : Bone Transplantation and Immune Response," J. Orthopaedic Surgery, 17 [2] 206-11 (2009). https://doi.org/10.1177/230949900901700218
- Hulbert S. F., "Ceramics in Clinical Applications: Past, Present and Future," J. High Tech Ceram., 189-213 (1987).
- Suominen E. A., Juhanoja J., and Yli-Urpo A., "Hydroxyapatite-glass Composite as a Bone Substitute in Large Metaphyseal Cavities in Rabbits," J. Int. Orthop, 19 167-73 (1995).
- Li P. Y. Q., Zhang F., and Kokubo T., "The Effect of Residual Glassy Phase in a Bioactive Glass-ceramic on the Formation on Its Surface Apatite Layer in Vitro," J. Master Sci.: Mater Med., 3 452-6 (1992). https://doi.org/10.1007/BF00701242
- Hench L. L., "Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials," J. Biomed Mater. Res., 2 [1] 117-41 (1971 ).
- Thompson I. D. and L. Hench L., "Mechanical Properties of Bioactive Glasses, Glass-Ceramics and Composites," Proc. Inst. Mech. Eng., Part H. J. Eng. Med., 212 [2] 127-36 (1998). https://doi.org/10.1243/0954411981533908
-
Lin F. H. and Hon M. H., "A Study on Bioglass Ceramics in the
$Na_2O-CaO-SiO_2-P_2O_5$ System," J. Mater Sci., 23 [12] 4295-9 (1988). https://doi.org/10.1007/BF00551922 - De Aza P. N. and Luklinska Z. B., "Effect of Glass-Ceramic Microstructure on its In Vitro Bioactivity," J. Mater Sci., 14 [10] 891-8 (2003). https://doi.org/10.1023/A:1025686727291
- El-Ghannam A., Hamazawy E., and Yehia A., "Effect of Thermal Treatment on Bioactive Glass Microstructure, Corrosion Behavior, Zeta Potential, and Protein Adsorption." J. Biomed Mater Res., 55 [3] 387-95 (2001). https://doi.org/10.1002/1097-4636(20010605)55:3<387::AID-JBM1027>3.0.CO;2-V
- Kokubo T., Shigematsu M., and Nagashima Y., "Apatite and Wollastonite Containing Glass-ceramics for Prosthetic Application," Bull. Inst. Chem. Res., 60 260-68 (1982).
- Kasuga T, Nakagawa K, Yoshida M, and Miyade E., "Compositional Dependence of Formation of an Apatite Layar on Glass-ceramic in Simulated Physiological Solution." J. Mater Sci., 22 3721-24 (1987). https://doi.org/10.1007/BF01161484
-
Shyu J. J. and Wu J. M., "Effects of Compositional Changes on the Crystallization Behavior of
$MgO-CaO-SiO_2-P_2O_5$ Glass-ceramics," J. Am. Ceram. Soc., 74 2123-30 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb08270.x - Kangasniemi K. and Yli-Urpo A., "Handbook of Bioactive Ceramics, Bioactive Glasses and Glass-Ceramics," Vol. 1, Ed. by Wilson J., CRC Press, Boston, 1990.
-
Tulyaganov D. U. and Agathopoulos S., "Synthesis, Bioactivity and Preliminary Biocompatibility Studies of Glasses in the System
$CaO-MgO-SiO_2-Na_2O-P_2O_5-CaF_2$ ," J. Mater Sci.: Mater Med, 22 217-27 (2011). https://doi.org/10.1007/s10856-010-4203-5 -
Jalota S., Bhaduri S. B., and Tas A. C., "A New Rhenanite (
${\beta}-NaCaPO_4$ ) and Hydroxyapatite Biphasic Biomaterial for Skeletal Repair," J. Biomedical Materials Research Part B: Appl. Biomaterials, 304-16 (2006). - Gong W., Abdelouas A., and Lutze W., "Porous Bioactive Glass and Glass-ceramics Made by Reaction Sintering under Pressure," J. Biomed Mater Res., 54 320-327 (2001). https://doi.org/10.1002/1097-4636(20010305)54:3<320::AID-JBM20>3.0.CO;2-E
- Ghannam E. A., "Advanced Bioceramic Composite for Bone Tissue Engineering: Design Principles and Structure-Bioactivity Relationship," J. Biomed Mater Res., A 69 490-501 (2004).
- Metwalli E. and Brow R. K., "Cation Effects on Anion Distributions in Aluminophosphate Glasses," J. Am. Ceram. Soc., 84 1025-32 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00785.x
Cited by
- The effect of clay on foaming and mechanical properties of glass foam insulating material vol.127, pp.1, 2017, https://doi.org/10.1007/s10973-016-5582-8