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Nomenclature Ty * Bulk temperature [ K]
. T~ Wall temperature [K]
A, Cross-sectional area of conduit [ m?] v | Qo di [ |
o : Velocity in flow direction
C, Specific heat [J/kg - K] z v o o /s
u- Bulk velocity in flow direction [ m/s]
d: Diameter of the conduit [ ] - ) o
. o , ' Dimensionless velocity in
I }]; arcny.nctlor? ialctor(2(dp/d:pc)]rd/pu ) %% flow direction( 4/ ) (-]
- Rey, - ess pressure dro - ) ) o L
] R HRERSIO b b » T Dimensionless velocity in flow direction
K: Power Law Consistency [ Ns™/m?] (2u"/f - Re,) [-]
Nu + Nusselt number -] r : Coordinate in radial direction [m]
Nuy + Nusselt number of CHF [-] r'1 Dimensionless coordinate in radial
n: Power law flow index (-] direction (-]
Re,: Newtonian Reynolds number(pud/n,) [-] 2 Coordinate in flow direction [ ]
Re,: Power law Reynolds number x" : Dimensionless coordinate in flow
o directio (-]
(pu’ "d"/K) (-] "
Re. - Modified power law Reynolds number
"o . Greek letters
(pud/n’) o Thermal diffusivity [n7/s]
T + Temperature [ K] B : Shear rate parameter((n,/&)(u/d)' ™) (-]
T : Dimensionless temperature (-] % : Shear rate [1/s]
T+ : Dimensionless temperature [-] . .
D n,: Apparent viscosity (T/Y) [ Ns/m?]
ol B (WAIAA) : T IELY S 7| A AR} F- S N, Zero shear rate viscosity [ Ns/m*]
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n*: Reference viscosity (n,/(1+B)) [ Ns/m?®]
n " : Dimensionless viscosity (n,,/n*) [-]
[ kg /m?]
[ Ns/m?*]

p . Fluid density

T . Shear stress

1. Introduction

Many attempts have been made in determining
the pressure drop and heat transfer characteristics
of commercial conduits in wide applications in
engineering, especially in the design of compact
heat exchangers. Consequently, extensive analytical
and experimental investigations have been
conducted on such heat and flow systems. The
investigation of the laminar flow and heat transfer
behavior in a circular conduit has been important
as a result of the ongoing research of an advanced
liquid cooling module for heat exchangers by a
existing circular commercial conduits. For fully
developed

rheological power law fluids in a circular conduit,

laminar flow of Newtonian and
the solutions have been suggested for both the
classical thermal boundary conditions of constant
wall temperature (CWT) and constant wall heat
flux (CHF) and the pressure drop.

For Newtonian fluids, pressure drop and heat
transfer coefficients were calculated by Shah and
London". For rheological power law fluids, Bird2>,
Grigull’, and Kozicki et al” obtained those
analytically and experimentally.

A grasping of rheological fluid flow behavior
will contribute directly to the solution of a variety
of commercial conduits with arbitrary cross—
sectional shapes. It is very significant to have a
knowledge of the characteristics of the pressure
drop and the forced convection heat transfer in
fully developed laminar rheological fluid flow in a
circular conduit to exercise an appropriate control
over the performance of the heat exchanger and to
economize the process. Furthermore, the results
provide an proper basis for estimating the effects
of the reduction of fluid frictional drag and heat
transfer enhancement. Recently a large number of

heat exchangers are designed and manufactured
for the chemical and biological process industries
to heat or cool rheological fluids such as
shear-thinning or shear-thickening fluids.
Rheological fluids usually have been assumed as
power law fluids in the analysis. Many rheological
fluids, however, have viscous properties which are
different

Although a power law model has been used

in the various shear rate ranges.
extensively for calculating velocity profile and
temperature field in engineering, it has significant
disadvantages that it only applies to the power
law region in the flow curve and the apparent
viscosity at the centroid of the conduit becomes
infinite.

Such a rheological behavior in the transition
zone causes the critical problem. It should be
determined in which shear rate range the system
1s operating and if either of the Newtonian or
power law solutions can be applied. This is not
always simple because there is not a suitable
shear rate parameter available and also the
solutions were obtained independently. If the shear
rate range falls within the transition zone then a
"transition equation” must be applied for the type
What is

required to overcome this problem is a solution for

of rheological fluid considered here.
a fluid which has rheological characteristics in the
wide shear rate zone.

A plenty of constitutive equations can describe
the apparent viscosity—shear rate relation for fluids
such as rheological fluid. A convenient and useful
equation of rheological fluid is the "modified power
law model” which was first proposed by Dunleavy
and Middleman”.

me = mll+ () M

Examination of equation (1) shows that the
apparent viscosity becomes equal to zero shear
rate viscosity at very low shear rates and the fluid
is operating in the Newtonian region. At the
higher shear rates the fluid becomes a power law
is a

fluid. At intermediate shear rates, there
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transition zone. An additional advantage of the
modified power law model over other constitutive

. 6 7 8
equations such as Sutterby ) , Cross ) , Carreau’”

, etc.
is that the familiar Newtonian and power law
Reynolds numbers are retained in the analysis.
The purpose of the present research 1s to
upgrade the related knowledge by presenting
fluids

illustrated and to develop the

solutions  for having the rheological
characteristics
relationships between the dimensionless pressure
drop and dimensionless convective heat transfer
for a rheological fluild with modified power law
fluid model.

characteristics

Such a solution should have the
that at low
Reynolds number) the Newtonian solution is an

shear rates (low
asymptote while at large shear rates the power
law solution is an asymptote. In addition, the
solution should predict the appropriate friction
factor-Reynolds number relation and heat transfer
coefficients in the transition zone. Finally a specific
parameter explaining the shear rate is needed to
predict the shear rate range in terms of the
operating characteristics of the system.

2. Theoretical background

The study of fully developed laminar flow in
conduits consists of one of the fundamental and
classical problems in fluid mechanics and heat
transfer. Solutions to such problems are obtained
by solving the appropriate forms of the momentum
and energy equations along with the associated
boundary conditions.

It is convenient to start with the conservation
equations to solve a problem related to fluid
flowing through a circular conduit. For steady flow
of an incompressible fluid with negligible viscous
dissipation, the governing equations depend on the
apparent viscosity that related to the shear stress
and shear rate.

Fig. 1 Schematic diagram of a circular conduit

For a rheological modified power law fluid flow
through a circular conduit as shown in Fig. 1, the
fully developed velocity field is described by the
following momentum equation.

1_d du\ _ _ _dp
v dr(rna dr) o dx @
with boundary conditions
wg) = 0, @O _
dr

The analytical models of the apparent viscosity
for modified power law fluids are as following.

0, = Mo
' Mo du gy,
1+ K ( dr)
Following dimensionless quantities may be
defined
0q. %P
+ r dx + U
r= —, f= —, u' = =
R pu’ w
.. 8T, .
where the Darcy friction factor (f=——5) is
pU

defined by a dimensionless pressure drop and
R(=d/2) is a radius of the circular conduit.

un * Mo
e = 7’ e Mo, u
W% N1I=n
1+ K(d)
pud pﬂQﬂLdn
Re, = m Re, = Ve
_ pu w _ "o
Rem x 77 1+ﬁ
N
Re o (a )l—n ++ u
g
= = -\ 7 y f ° Rem
b Re, K\d (——)
— —2—n
_pud | pu- d"
Re,, = Re,+ Re, = n + Ve
= Lud gy p)
Mo
+ 1+p
it — 3)
! f ° Rem Cl’LLJrJr 1—n
B
From equations (1) and (3),
asB -0, n, —»n, and Re,— Re,
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as B — very large, n,— K (%) " 'and

Re,

mg)Reg
For a rheological modified power law fluid
through a circular conduit, the continuity equation

can be expressed by the following equation

— 1
u= /Acu dA. (4)

c

1 R
5 / u - 27rdr
TR 0

The dimensionless forms of equations (2) and
(4) are

4

[+ Re, =—7 5)
/ T o
0
1 d, . Ldu™
— " =1 (6)
r d7‘+( T dr* )

with boundary conditions

++ du++(0)
uw (1) =0, ———=0
drt

Thus equation (6) could give the complete
solution for the fluids and the final results can be
presented as the dimensionless pressure drop
(product of f - Re,,)

parameter 3.

versus the shear rate

The energy equation for the thermally developed
flow in a circular conduit neglecting viscous
dissipation and rate of energy generation 9 with
thermal boundary condition of constant heat flux
(CHF, H) can be written as

dT’
——(T—T): pcl,ud—xB (7)

with boundary conditions

;o ATO)

mr = 1, 2

Following dimensionless quantities may now be
defined

The dimensionless form of equation (7) becomes

1 d -+ T+
rodrt dr

)= u" (8)

with boundary conditions
o7 (0) _

7°°(1) = o,
63/+

Considering the definition of bulk temperature,

Tg:
/ u7dA,
A

For the circular conduit geometry, Eg.(9) may be
rewritten in dimensionless form

1+
1= 2/ w THrtar” (10)
0

Introducing the definition of T and solving for
the Nusselt number gives

Nuy= ——1 (1)
2/ u T et
0

Equations (11) was solved numerically to obtain
the relationship of Nusselt number vs. the shear
rate parameter 3 for constant heat flux with the
dimensionless velocity distribution, u+ calculated
from the solution of the previous momentum
equation.

3. Results and discussion

A plenty of numerical solutions for shear-
thinning fluid flows by rheological modified power
law fluid model have been acquired for present
research. For fully developed non-Newtonian

laminar flows, the present results include the

variation of the dimensionless pressure drop
reduction(product of friction factor and modified
Reynolds number) and dimensionless heat transfer
with
shear rate parameter (B) in a circular conduit. The

enhancement(increase of Nusselt numbers)

results of these analyses will be revealed in this
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chapter and presented in Fig. 2 to Fig. 3.

Numerical solutions to Eq. (5) for a circular
conduit are shown in Fig. 2. The figures explain
that in a quantitative sense, 3 defines the three
regions, Region I - Newtonian, Region II -
Transition, and Region III - Power Law. The
parameter [ is the shear rate parameter which
specifies in which region of the flow curve the
system 1s operating. Large values of [ will
indicate that the system is operating in region III,
low values of B indicate Region I and intermediate
values of B indicate the transition region (Region
1.

The shear rate parameter defines the transition
region (approximately 10> < B < 10*) and is
useful to estimate whether the fluid is a fully
developed Newtonian fluid (B< 10*) or a fully
developed Power Law fluid (3> 10*). Thus the
shear rate parameter B can be used to determine
which of the three regions a particular system is

operating in.

80
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n=1.0

60

Dimensionless 50
Pressure Drop

(f ° Rem) 40

30

20r

10 1 1 L L 1 1 L

logB
Fig. 2 Variation of dimensionless pressure drop
with shear rate parameter (B) for shear-thinning

fluids in a circular conduit

Fig. 2 shows the relationship between f Ren
and the shear rate parameter and also expresses
several important features of rheological modified
power law fluid flow. First, for complete similarity
modeling, the modified Reynolds number and the

parameter 3 must both be considered. Also, a
considerable difference exists if it is assumed that
the system 1s operating in region III when it
actually 1is operating in Region I  Simple
calculations show that errors in pressure drop
predictions can be as large as several hundred
percent if such an uncertainty exists in correct
operating region.

As the shear rate parameter increases, the
Reynolds number increases. As the power law
flow index(n) increases, the tendency increases to
retain Newtonian characteristics at low Reynolds
numbers. As the flow index decreases, the
tendency increases to retain the characteristics of

power law fluid at high Reynolds numbers.

48

n=0.5

NMH

logB
Fig. 3 Variation of Nusselt number (CHF) with
shear rate parameter (5) for shear-thinning fluids in

a circular conduit

The numerical calculations of the dimensionless
pressure drop (product of the friction factor and
Reynolds numbers) and forced convective heat
transfer enhancement for the shear-thinning fluids
in a circular conduit (increase of Nusselt numbers)
for the Newtonian and the power law region were
with  other published
asymptotic  results[Shah Bird?,
Grigull? | and Kozicki et.al’]. For Newtonian fluid
flow in a circular conduit, the differences of the

compared previously

1
and London” ,

friction factors times the Reynolds numbers
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between the results of Shah and London" and the
These
results are presented in Table 1. For power law

present results are less than 0.01 % .

fluids which various flow indices (n=04, 0.5, -,
1.0), the differences of the friction factors times
the generalized Reynolds numbers between the
results of Kozicki et al. 4) and the present results
are less than 0.004 %. These results are shown in
Table 2.

At the power region—III, where high Reynolds
drop  with

circular  conduit

number  exists, the pressure
shear-thinning fluds in a
decreased up to about 58% compared to that at
drop also

decreased with shear rate and Reynolds number.

Newtonian Region. The pressure

For Newtonian fluids in a circular conduit, the
uncertainties of the Nusselt number (CHF and
CWT) between the results of Shah and London”
and the present results are less than 0.03%. These
results are also presented in Table 1. For power
law fluids in a circular conduit, the differences of
the Nusselt numbers (CHF and CWT) between the
results of the results of BirdZ), Gn'gullS) and the
present results are less than 1.1% and 0.3 % for
the thermal boundary conditions of CHF and
CWT, respectively. These results are shown in
Table 3.

Table 1 Present and previous value of f- Re ,

Nuy, and Ny, of Newtonian Fluid

f+ Rep,| f+ Rep,| Nuy Nuy Nur Nur
(previous)” (present) (previous)l) (present) (previous)l) (present)
64.000 | 64.000 | 4.364 | 4.363 3.657 3.656

Table 2 Present and previous value of f- Re P of

Power Law Fluids

n (previous)” (present)
1.0 64.000 64.000
0.9 53.282 53.282
0.8 44322 44323
0.7 36.829 36.830
0.6 30.557 30.557
0.5 25.298 25.299

Fig. 3 shows the laminar and fully developed
Nusselt numbers versus the shear rate parameter
for a circular conduit for the thermal boundary
conditions of constant heat flux (CHF). Depending
this results

showed the maximum 9% increase of convective

on the power-law flow index(n),

heat transfer compared with Newtonian heat
transfer. According the numerical solutions in Fig.
3, the influence of the shear rate parameter B is
much less for the fully developed Nusselt numbers
than for the product of f and Re, . Thus it would
that the influence of B on the
hydrodynamic internal flow is much more critical

appear

than the convective heat transfer.

Table 3 Present and previous value of Ny of

Power Law Fluids

o | Nug | Nup | Nuy | Nup | Nuy | Nug

(previous)” | (previous)” | (previous)” | (previous)” | (present) | (present)
1.0 | 4.363 | 3.657 | 4.360 - 4.364 | 3.657
0.9 | 4410 | 3.691 | 4.400 - 4411 | 3.693
0.8 | 4.467 | 3.732 | 4.449 - 4.468 | 3.738
0.8 | 4.538 | 3.783 | 4.510 - 4.539 | 3.792
0.6 | 4.628 | 3.850 | 4.589 - 4.629 | 3.861
0.5 | 4.745 | 3.949 | 4.696 - 4.746 | 3.949

4. Conclusions

Numerical solutions for rheological fluid flows
by rheological modified power law model have
been determined with the conditions of fully
These
variation of  the

developed non-Newtonian laminar flows.
calculations  include the
dimensionless pressure drop and dimensionless
heat with

Reynolds number in a circular conduit.

transfer  enhancement qualitative
By utilizing a constitutive equation of the
rheological modified power law model, solutions
considered this shear rate dependence on pressure
drop and convective heat transfer and through a
dimensionless shear rate parameter enabled an
appropriate choice of the pressure drop and heat
transfer solutions.
and present calculations

From literatures
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between Newtonian and rheological fluid flow it is
evident that for the thermal boundary conditions
(CHF) a rheological fluid with power flow index
less than one shows a convective heat transfer
enhancement than a Newtonian fluid. Owing to the
reduction in pressure loss and the increase in heat
transfer rates, rheological fluids seem to be better
working fluids in commercial conduits and heat
fluids.
Thereby, the use of appropriate rheological fluids

exchangers compared to Newtonian
by modified power law fluid model may lead to
heat transfer enhancement without the handling
difficulties.

The applicability of this friction factor and
Reynolds number relation will be useful for the
determination of cross-sectional shapes for
pressure drop in commercial conduits and the heat
transfer enhancement for rheological fluids in a
circular conduit can be applied for the design of a

liquid cooling module in heat exchanger.
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