DOI QR코드

DOI QR Code

CFD Modeling of Unsteady Gas-Liquid Flow in a Small Scale Air-Lift Pump

소형 공기 양수 펌프의 불규칙한 가스-액체 흐름의 CFD 모델링

  • Received : 2007.09.17
  • Accepted : 2008.02.12
  • Published : 2012.02.29

Abstract

공기 양수 펌프는 재생 에너지 분야, 부식 및 마모 특성의 유체의 활용 등 높은 신뢰성과 낮은 유지보수 비용을 필요로 하는 분야에서 그 사용이 증대되고 있다. 본 연구에서는 소형 공기 양수 펌프의 성능 평가 및 기초 데이터를 얻기 위한 연구로, D=0.012~0.019m, L=0.933m인 배관의 침수 깊이(${\beta}$=0.55,0.60,0.65,0.70)에 따른 수치해석을 수행하였다. 수치 해석 및 실험 결과는 유사성을 뛰었으며, 펌프의 사양과 효율은 공기의 질량 유속 비, 침수 깊이 비와 양수 배관의 길이에 관한 함수로 나타났다. 그리고 최대 물과 공기 질량 유속의 비는 각 배관에서 서로 다른 침수 깊이의 비로 나타났으며, 공기 양수 펌프의 최대 효율이 발생되는 운전조건은 슬러그(slug)와 슬러그 교반 정도(slug-churn flow regime)에 따라 나타남을 알 수 있었다.

Keywords

References

  1. A. E. Bergeles, 1949. Flow of gas-liquid mixture. Chem. Eng., pp. 104-106.
  2. A. H. Stenning, Martin, C.B., 1968. An analytical and experimental study of air lift pump performance. J. Eng. Power, Trans. ASME Vol. 90, pp. 106-110. https://doi.org/10.1115/1.3609143
  3. B. Storch, 1975. Extraction of sludges by pneumatic pumping. In: Second Symposium on Jet Pumps and Ejectors and Gas Lift Techniques, Churchill College, Cambridge, England, G4, pp. 51-60.
  4. Y. Taitel, D. Bornea, A.E. Dukler, 1980. Modeling flow pattern transition for steady upward gas-liquid flow in vertical tubes. AICHEJ Vol. 26, pp. 345-354. https://doi.org/10.1002/aic.690260304
  5. Hatakeyama, Takahashi, Saito, 1999. A numerical simulation of unsteady flow in an air lift pump. Journal of the Mining and Materials Processing Institute of Japan(Shigen-to-Sozai) Vol. 115, pp. 958-964 https://doi.org/10.2473/shigentosozai.115.958
  6. K. Pougatch, M. Salcudean, 2008. Numerical modeling of deep sea air-lift. International Journal of Ocean Engineering Vol. 35, pp. 1173-1182. https://doi.org/10.1016/j.oceaneng.2008.04.006
  7. Dongying Qian, Adeniyi Lawal, 2006. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. International Journal of Chemical Engineering Science Vol. 61, pp. 7609-7625. https://doi.org/10.1016/j.ces.2006.08.073
  8. E.T. Tudose, M. Kawaji, 1999. Experimental investigation of Taylor bubble acceleration mechanism in slug flow. Chemical Engineering Science Vol. 54, pp. 5761-5775. https://doi.org/10.1016/S0009-2509(99)00149-9
  9. Donghong Zheng, Xiao He, Defu Che, 2007. CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow. International Journal of Heat and Mass Transfer Vol. 50, pp. 4151-4165. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.041
  10. G.F. Hewitt, D.N. Roberts, 1969, Studies of two-phase flow patterns by simultaneous X-ray and flash photography, UKAEA Report AERE-M2159.
  11. V.C. Samaras, D.P. Margaris, 2005. Two-phase flow regime maps for air-lift pump vertical up ward gas-liquid flow. International Journal of Multiphase Flow Vol. 31, pp. 757-766. https://doi.org/10.1016/j.ijmultiphaseflow.2005.03.001
  12. FLUENT 6.1 documentation, 2003. Fluent Incorporated, Lebanon, New Hampshire.
  13. FLUENT application briefs, 2002a-2002d. Fluent Incorporated, Lebanon, New Hampshire.
  14. T., Cui, Z.F., 2006a. CFD modelling of slug flow in vertical tubes. Chemical Engineering Science Vol. 61, 676-687 https://doi.org/10.1016/j.ces.2005.07.022
  15. C.W. Hirt, B.D. Nichols, 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  16. M.T. Kreutzer, Du, P., Heiszwolf, J.J., F. Kapteijn, J.A. Moulijn, 2001. Mass transfer characteristics of three-phase monolith reactors. Chemical Engineering Science Vol. 56, pp. 6015-6023. https://doi.org/10.1016/S0009-2509(01)00271-8
  17. J.U. Brackbill, D.B. Kothe, C. Zemach, 1992. A continuum method for modeling surface tension. Journal of Computational Physics Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  18. D.A. Kouremenos, J. Staicos, 1985. Performance of a small air-lift pump. International Journal of Heat & Fluid Flow Vol. 6, pp. 217-222 https://doi.org/10.1016/0142-727X(85)90016-5
  19. R.I. Issa, 1986. Solution of the implicitly discretized fluid flow equations by operator splitting, J. Comput. Phys. Vol. 62 pp. 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
  20. H.K. Versteeg, W. Malalasekera,1995. An Introduction to Computational Fluid Dynamics, the Finite Volume Method, Longman Scientific and Technical, Harlow, Essex, UK, 1995.
  21. T. Taha, Z.F. Cui, 2004. Hydrodynamics of slug flow inside capillaries. Chemical Engineering Science Vol. 59, pp. 1181-1190. https://doi.org/10.1016/j.ces.2003.10.025

Cited by

  1. 기포펌프의 형상 및 작동 조건에 따른 전산유동해석 vol.18, pp.2, 2012, https://doi.org/10.5407/jksv.2020.18.2.018