DOI QR코드

DOI QR Code

양방향 비대칭 채널에서 네트워크 부호화를 위한 변조 방식

Modulation Scheme for Network-coded Bi-directional Relaying over an Asymmetric Channel

  • 류현석 (고려대학교 전기전자전파공학부 무선정보시스템공학 연구실) ;
  • 강충구 (고려대학교 전기전자전파공학부 무선정보시스템공학 연구실)
  • 투고 : 2010.12.06
  • 심사 : 2011.01.26
  • 발행 : 2012.02.29

초록

본 논문에서는 기지국(base station: BS)과 릴레이(relay station: RS), 그리고 단말(mobile station: MS) 사이의 릴레이 채널과 액세스 채널의 품질이 서로 다른 양방향 비대칭 채널에서 네트워크 부호화 기법을 위한 변조 방식을 제안한다. 제안하는 변조 방식은 이중 성상도를 기반으로 하고 있으며, RS는 네트워크 부호화된 심볼을 연속된 두 심볼 구간 동안 서로 다른 성상도를 이용하여 BS와 MS로 방송한다. 레일리 페이딩 채널에서 제안하는 변조 방식의 비트 오류율 성능에 대한 상한 식을 수학적으로 유도하고, 기존에 양방향 비대칭 채널에서 네트워크 부호화 기반의 양방향 통신 기법을 위해 제안되었던 혼합 성상도 기반의 변조 방식과 성능을 비교 분석한다. 또한 제안하는 변조 방식을 사용하는 네트워크 부호화 기반의 양방향 통신 기법과 기존의 양방향 통신 기법들의 총 채널 사용 횟수를 비교 분석한다. 모의실험을 통해 제안하는 변조 방식이 양방향 비대칭 채널에서 기존 기법들과 동일한 대역 효율성을 유지하면서도 목표 비트 오류율 $10^{-2}$에서 3.5~4dB의 $E_b/N_0$ 이득이 있음을 보인다.

In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when $E_b/N_0$ is equal to $10^{-2}$, while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.

키워드

참고문헌

  1. R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, "Network information flow," IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204-1216, July 2000. https://doi.org/10.1109/18.850663
  2. S. Y. R. Li, R. W. Yeung, and N. Cai, "Linear network coding," IEEE Trans. Inform. Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003. https://doi.org/10.1109/TIT.2002.807285
  3. R. Koetter and M. Medard, "An algebraic approach to network coding," IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782-795, Oct. 2003. https://doi.org/10.1109/TNET.2003.818197
  4. P. Larsson, N. Johansson, and K. E. Sunell, "Coded Bi-directional Relaying," in proc. IEEE VTC'06, pp. 851-855, May 2006.
  5. S. Zhang, S.-C. Liew, and P. P. Lam, "Physical-layer network coding," in proc. ACM. Mobile Computing and Networking (MobiCom), pp. 358-365, 2006.
  6. S. Katti, H. Rahul, W. Hu, R. Hariharan, M. Medard, and J. Crowcroft, "Xors in the air: practical network coding," IEEE/ACM Trans. Networking, vol. 16, no. 3, pp. 497-510, June 2008. https://doi.org/10.1109/TNET.2008.923722
  7. M. Feng, X. She, and L. Chen, "Enhanced bi-directional relaying schemes for multi-hop communications, in proc. IEEE GLOBECOM'08, pp. 1-6, Nov. 2008.
  8. A. J. Goldsmith and S. G. Chua, "Variable-rate variable-power M-QAM for fading channels," IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 1997. https://doi.org/10.1109/26.634685
  9. A. J. Goldsmith and S. G. Chua, "Adaptive coded modulation for fading channels," IEEE Trans. Commun., vol. 46, no. 5, pp. 595-602, May 1998. https://doi.org/10.1109/26.668727
  10. H.-S. Ryu, H. S. Lee, J. Y. Ahn, and C. G. Kang, "Selective cooperative relaying in cellular OFDMA-TDD system for broadband mobile wireless services," J. of Commun. and Networks (JCN), vol. 12, no. 5, pp. 466-474, Oct. 2009.
  11. J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill2000.
  12. S. Hosur, J. Balakrishnan, and A. Batra, "Versatile system for dual carrier transformation in orthogonal frequency division duplexing," U.S. Patent Application Publication, pp. 57-59, April 2005.
  13. Multiband OFDM Alliance (MOBA) Special Interest Group (SIG)/WiMedia Alliance (WiMedia), Multiband OFDM physical layer specification, Rel.1.1, July 2005.
  14. L. Szczecinski and M. Bacic, "Constellation design for multiple transmission: maximizing the minimum squared Euclidean distance," in pro. IEEEWCNC'05, pp. 1066-1071, March 2005.
  15. J. W. Kim, H. S. Lee, J. Y. Ahn, and C. G. Kang, "Design of signal constellation rearrangement (CoRe) for multiple relay links," in proc. IEEE GLOBECOM'09, pp. 1-6, Nov. 2009.
  16. C. Wengerter, A. G. E. von Elbwart, E. Seidel, G. Velev, and M. P. Schmit, "Advanced hybrid ARQ technique employing a signal constellation rearrangement," in proc. IEEE VTC'02-Fall, pp. 2002-2006, Sep. 2002.
  17. IEEE 802.16m-07/292r1, "Enhanced HARQ technique using constellation rearrangement," Nov. 2007.
  18. IEEE 802.16m-08/771r1, "Enhanced HARQ scheme with signal constellation rearrangement," July 2008.
  19. A. J. Goldsmith, Wireless Communications, Cambridge University Press,2005.
  20. H.-S. Ryu, J.-S. Lee, and C. G. Kang, "BER analysis of constellation rearrangement for cooperative relay networks over Nakagami-m fading channel," in proc. IEEE ICC'11, pp. 1-5, June 2011.