References
- P.G. Drazin and W.H. Reid, Hydrodynamic stability, Cambridge University Press, UK, (1981)
- F.B. Lipps, Numerical simulation of three-dimensional bénard convection in air, Journal of Fluid Mechanics, 75 pp.113-148 (1976)
- S. Balachandar, M.R. Maxey and L. Sirovich, Numerical simulation of high Rayleigh number convection, Journal of Scientific Computing, 4, pp.219-236 (1988)
- D.P. McKenzie, J.M. Roberts and N.O. Weiss, Convection in the earth's mantle: towards a numerical simulation, Journal of Fluid Mechanics, 62, pp.465-538 (1974) https://doi.org/10.1017/S0022112074000784
- A. Nakano, H. Ozoe and S.W. Churchill, Numerical computation of natural convection for a low-Prandtl-number fluid in a shallow rectangular region heated from below, Chemical Engineering Journal, 71, pp.175-182 (1998) https://doi.org/10.1016/S1385-8947(98)00136-3
- T. Pesso and S. Piva, Laminar natural convection in a square cavity: Low Prandtl numbers and large density differences, International Journal of Heat and Mass Transfer, 52, pp.1036- 1043 (2009) https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.005
- R. Verizicco and R. Camussi, Prandtl number effects in convective turbulence, Journal of Fluid Mechanics, 383, pp.55-73 (1999) https://doi.org/10.1017/S0022112098003619
- R. Simitev and F.H. Busse, Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells, Journal of Fluid Mechanics, 532, pp.365-388 (2005) https://doi.org/10.1017/S0022112005004398
- S.K. Choi and S.O. Kim, Treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for turbulent natural convection flows, International Journal of Heat and Mass Transfer, 51, pp.2377-2388 (2008) https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.012
- B.J.Yun et al. Construction Report of Separate Effect Test Facility for Passive Auxiliary Feedwater System (PASCAL), KAERI/TR-4085/2010 (2010)
- J. Kim et al. Analysis of a Molten Pool Natural Convection in the APR1400 RPV at a Severe Accident, Transaction of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 26-27 (2005)
- H. Lee and G.C. Park, Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat Sources, Journal of Korean Nuclear Society, 30, pp.496-506 (1998)
- G de, Vahl Davis, Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution, International Journal of Numerical Methods in Fluids, 3, pp.249-264 (1983) https://doi.org/10.1002/fld.1650030305
- J.M. House, C. Beckermann and T.F. Smith, Effect of a centered conducting body on natural convection heat transfer in an enclosure, Numerical Heat Transfer, Part A, 18, 213- 225 (1990) https://doi.org/10.1080/10407789008944791
- Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline, International Journal of Heat and Mass Transfer, 45, pp.2373-2385 (2002) https://doi.org/10.1016/S0017-9310(01)00316-7
- A. Mezrhab, H. Bouali, H. Amaoui, M.Bouzidi, Computation of combined natural-convection and radiation heat-transfer in a cavity having a square body at its center, Applied Energy, 83, pp.1004-1023 (2006) https://doi.org/10.1016/j.apenergy.2005.09.006
-
H.S. Yoon, M.Y. Ha, B.S. Kim and D.H. Yu, Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of
$10^{7}$ , Physics of Fluids, 21, 047101-1 - 047101-11 (2009) https://doi.org/10.1063/1.3112735 - H.K. Jeong, H.S. Yoon, M.Y. Ha and M. Tsutahara, An immersed boundary-thermal lattice Boltzmann method using an equilibrium internal energy dendisy approach for the simulation of flows with heat transfer, Journal of Computational Physics, 229, pp.2526-2543 (2010) https://doi.org/10.1016/j.jcp.2009.12.002
- M.Y. Ha, H.S. Yoon, K.S. Yoon, S. Balachandar, I. Kim, J.R. Lee and H.H. Chun, Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body, Numerical Heat Transfer, Part A, 41, pp.183-210 (2002) https://doi.org/10.1080/104077802317221393
- C.L. Streett and M.G. Macaraeg, Spectral Multi-Domain for Large-Scale Fluid Dynamic Simulations, Applied Numerical Mathematics, 6, 123-139 (1989) https://doi.org/10.1016/0168-9274(89)90058-5
- C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer Verlag, (1988)
- S.J. Parker, Stability and vortex shedding of bluff body arrays, PhD Thesis, University of Illinois, Urbana, IL, (2002)
- P. Le Quere, Accurate solution to the square thermally driven cavity at high Rayleigh number, Computers & Fluids, 20, pp.29 (1991) https://doi.org/10.1016/0045-7930(91)90025-D
- H.S. Yoon, K.V. Sharp, D.F. Hill, R.J. Adrain, S. Balachandar, M.Y. Ha and K. Kar, Integrated Experimental and Computational Approach of Flow in a Stirred Tank, Chemical Engineering Science, 56, 3714-3728 (2001)
- D.H. Lee, M.Y. Ha, S. Balachandar and S.S. Lee, Numerical Simulations of Flow and heat transfer Past a Circular Cylinder with a periodic array of Fins, Physics of Fluids, 16, 1273-1286 (2004) https://doi.org/10.1063/1.1694837
- R.E. Kelly and D. Pal, Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation, Journal of Fluid Mechanics, 86, 433-456 (1978) https://doi.org/10.1017/S0022112078001226
- J.R. Lee, M.Y. Ha, S. Balachandar, H.S. Yoon and S.S. Lee, Natural convection in a horizontal layer of fluid with a periodic array of square cylinders in the interior, Physics of Fluids, 16, pp.1097-1117 (2004) https://doi.org/10.1063/1.1649989
- D. Puigjaner, J. Herrero, C. Simo and F. Giralt, Bifurcation analysis of steady Rayleigh-Benard convection in a cubical cavity with conducting sidewalls, Journal of Fluid Mechanics, 598 (2008) 393-427
- H. Bertin and H. Ozoe, Numerical study of two-dimensional natural convection in a horizontal fluid layer heated from below, by finite-element method: influence of Prandtl number, International Journal of Heat and Mass Transfer, 29, 439-449 (1986) https://doi.org/10.1016/0017-9310(86)90213-9
- M.Y. Ha, I.K. Kim, H.S. Yoon, and S. Lee, Unsteady fluid flow and temperature fields in a horizontal enclosure with an adiabatic body, Physics of Fluids 14, pp.3189-3202 (2002) https://doi.org/10.1063/1.1497168
- R.M. Clever and F.H. Busse, Convection at very low Prandtl number, Physics of fluids, 2, pp.334-339 (1990) https://doi.org/10.1063/1.857783
- H. Ozoe and T. Hara, Numerical analysis for oscillatory natural convection of low Prandtl number fluid heated from below, Numerical Heat Transfer Part A, 27, pp.307-317 (1995) https://doi.org/10.1080/10407789508913702
- S. Arcidiacono, I. Di Piazza, M. Ciofalo, Low-Prandtl number natural convection in volumetrically heated rectangular enclosures II Square cavity, AR=1, International Journal of Heat and Mass Transfer, 44, pp.537-550 (2001) https://doi.org/10.1016/S0017-9310(00)00118-6
Cited by
- Numerical study of MHD natural convection in a rectangular enclosure with an insulated block vol.71, pp.10, 2017, https://doi.org/10.1080/10407782.2017.1330090