DOI QR코드

DOI QR Code

Understanding of Protein Adsorption to Contact Lens Hydrogels with Varying Surface Energy

콘택트렌즈용 하이드로젤 계면에너지에 따른 단백질 흡착현상의 이해

  • Jeon, So-Ha (Department of Optometry, Seoul National University of Science and Technology) ;
  • Noh, Hye-Ran (Department of Optometry, Seoul National University of Science and Technology)
  • 전소하 (서울과학기술대학교 안경광학과) ;
  • 노혜란 (서울과학기술대학교 안경광학과)
  • Received : 2011.10.12
  • Accepted : 2011.12.02
  • Published : 2012.05.25

Abstract

Interfacial properties of commercially available soft contact lens hydrogels were studied to understand thermodynamic phenomena of protein adsorption. Hydrogel particles ($1{\times}1mm^2$) with varying water wettability were exposed to bovine serum albumin solutions for an hour. The remained albumin solutions were analyzed with Bradford assay method. The amount of protein adsorbed to hydrogels increased with protein solution concentrations following Langmuir isotherm. The partition coefficient ($P$) and Gibbs free energy cost of dehydrating the surface region by protein displacement upon adsorption increased with increasing hydrophilicity of contact lens. Understanding of physical chemistry in protein adsorption to contact lens materials enabled elucidating relationships between surface energy and albumin adsorption capacity.

콘텍트렌즈용 하이드로젤의 계면 특성의 이해를 위해 단백질 흡착 현상을 열역학을 바탕으로 연구하였다. 다른 습윤성을 갖는 $1{\times}1mm^2$ 크기의 하이드로젤을 알부민(bovine serum albumin, BSA)용액에 1시간 동안 침지시킨 후 남아있는 BSA 용액의 농도를 Bradford assay로 정량하였다. 모든 하이드로젤로의 단백질 흡착량은 단백질 농도가 증가함에 따라 계면 흡착량이 증가하며 Langmuir 곡선의 형태를 보였다. 또한 계면과 용액내의 단백질 농도비($P$), 계산된 흡착 Gibbs free energy는 하이드로젤 재료의 친수성도가 증가함에 따라 증가하였다. 표면에너지와 단백질 흡착량 상관관계를 이해하여 콘택트렌즈 재질로의 단백질 흡착현상의 물리화학적 해석이 가능함을 알 수 있었다.

Keywords

References

  1. T. V. Chirila, Y. Hong, P. D. Dalton, I. J. Constable, and M. F. Refojo, Prog. Polym. Sci., 23, 475 (1998). https://doi.org/10.1016/S0079-6700(97)00045-2
  2. B. Ratner and S. Bryant, Annu. Rev. Biomed. Eng., 6, 41 (2004). https://doi.org/10.1146/annurev.bioeng.6.040803.140027
  3. J. Bohnert, T. Horbett, B. Ratner, and F. Royce, Invest. Ophthalmol. Vis. Sci., 29, 362 (1988).
  4. B. Ratner, Polym. Int., 56, 1183 (2007). https://doi.org/10.1002/pi.2319
  5. Y. Shin, D. Han, Y. Kim, and S. Kim, Polymer(Korea), 16, 520 (1992).
  6. J. H. Ahn, Y. S. Jeon, D. J. Chung, and J. H. Kim, Polymer(Korea), 35, 94 (2011).
  7. A. Krishnan, J. Sturgeon, C. Siedlecki, and E. A. Vogler, Langmuir, 19, 10342 (2003). https://doi.org/10.1021/la035308t
  8. F. Holly and M. Refojo, J. Biomed. Mater. Res., 9, 315 (1975). https://doi.org/10.1002/jbm.820090307
  9. J. F. Kunzler, Contact Lens Spectrum, 1, 9 (1999).
  10. H. Noh, S. T. Yohe, and E. A. Vogler, Biomaterials, 29, 2033 (2008). https://doi.org/10.1016/j.biomaterials.2008.01.017
  11. H. Noh and E. A. Vogler, Biomaterials, 28, 405 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.006
  12. H. Noh and E. A. Vogler, Biomaterials, 28, 405 (2006).
  13. H. Noh and E. A. Vogler, Biomaterials, 27, 5801 (2006). https://doi.org/10.1016/j.biomaterials.2006.08.005
  14. J. Lee and S. Kim, Polymer(Korea), 21, 332 (1997).
  15. J. W. Kwon, D. C. Kim, I. J. Yoon, Y. N. Jeong, J. Y. Jeong, and I. Hwang, Polymer(Korea), 33, 111 (2009).
  16. P. C. Nicolson and J. Vogt, Biomaterials, 22, 3273 (2001). https://doi.org/10.1016/S0142-9612(01)00165-X
  17. D. Luensmann and L. Jones, Cont. Lens. Anterior Eye, 31, 179 (2008). https://doi.org/10.1016/j.clae.2008.05.004
  18. Y. Lai, A. Wilson, and S. Zantos, "Contact lens", in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, p 191 (1993).
  19. J. Khan and C. Graham, Arch. Ophthalmol., 109, 825 (1991). https://doi.org/10.1001/archopht.1991.01080060089031
  20. B. Holden, D. Sweeney, A. Vannas, K. Nilsson, and N. Efron, Invest. Ophthalmol. Vis. Sci., 26, 1489 (1985).
  21. E. Alfonso, S. Mandelbaum, M. Fox, and R. Forster, Am. J. Opthalmol., 101, 429 (1986). https://doi.org/10.1016/0002-9394(86)90641-0
  22. J. H. Teichroeb, J. A. Forrest, V. Ngai, J. W. Martin, L. Jones, and J. Medley, Opt. Vis. Sci., 85, 1151 (2008). https://doi.org/10.1097/OPX.0b013e31818e8ad6
  23. L. N. Subbaraman, J. Woods, J. H. Teichroeb, and L. Jones, Opt. Vis. Sci., 86, 244 (2009). https://doi.org/10.1097/OPX.0b013e3181981b54
  24. J. Josephson and B. Caffery, ICLC, 6, 223 (1980).
  25. M. Allansmith, D. Korb, J. Greiner, A. Henriquez, M. Simon, and V. Finnemore, Am. J. Ophthalmol., 83, 697 (1977). https://doi.org/10.1016/0002-9394(77)90137-4
  26. P. Parhi, A. Golas, N. Barnthip, H. Noh, and E. A. Vogler, Biomaterials, 30, 6814 (2009). https://doi.org/10.1016/j.biomaterials.2009.09.005
  27. A. Krishnan, Y. Liu, P. Cha, D. L. Allara, and E. A. Vogler, Biomaterials, 27, 3187 (2006). https://doi.org/10.1016/j.biomaterials.2005.12.032
  28. A. Krishnan, J. Sturgeon, C. A. Siedlecki, and E. A. Vogler, J. Biomed. Mater. Res., 68A, 544 (2004). https://doi.org/10.1002/jbm.a.20104
  29. E. A. Vogler, Adv. Colloid Interface Sci., 74, 69 (1999).
  30. K. L. Menzies and L. Jones, Optom. Vis. Sci., 88, 493 (2011). https://doi.org/10.1097/OPX.0b013e3181ff9d39
  31. J. M. Gonzalez-Meijome, A. Lopez-Alemany, J. B. Almeida, M. A. Parafita, and M. F. Refojo, J. Biomed. Mater. Res. B, 83, 512 (2007).
  32. M. C. Lensen, V. A. Schulte, J. Salber, M. Diez, F. Menges, and M. Moller, Pure Appl. Chem., 80, 2479 (2008). https://doi.org/10.1351/pac200880112479
  33. S. Chen, L. Li, C. Zhao, and J. Zheng, Polymer, 51, 5283 (2010). https://doi.org/10.1016/j.polymer.2010.08.022
  34. L. Ruiz, J. G. Hilborn, D. Lionard, and H. J. Mathieu, Biomaterials, 19, 987 (1998). https://doi.org/10.1016/S0142-9612(97)00197-X
  35. N. Barnthip, H. Noh, E. Leibner, and E. A. Vogler, Biomaterials, 29, 3062 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.043