DOI QR코드

DOI QR Code

Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides

유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성

  • Kim, Seog-Jun (Department of Nano & Chemical Engineering, Kunsan National University)
  • 김석준 (군산대학교 공과대학 나노화학공학과)
  • Received : 2011.08.26
  • Accepted : 2011.11.05
  • Published : 2012.05.25

Abstract

ZnAl-LDH(layered double hydroxide) (Zn:Al=2:1 mole ratio) modified with stearic acid (SA) or oleic acid (OA) was synthesized by a coprecipitation method and compounded to SAN polymer at various contents. All the SAN composites were manufactured by a co-rotating twin-screw extruder and subsequently injection molded into several specimen. Morphology, transparency, and thermal resistance of these composites were evaluated by TEM, XRD(X-ray diffractometry), UV-Vis spectrophotometry, and thermogravimetric analysis. SAN nanocomposites containing OA-$Zn_2Al$ LDH showed better optical transmittance than SAN nanocomposites containing SA-$Zn_2Al$ LDH. All the SAN nanocomposites containing OA-$Zn_2Al$ LDH or SA-$Zn_2Al$ LDH exhibited improvement of thermal resistance at second stage of thermal oxidation. These results were explained by the fact that the interaction between organic modifier and polymer performed an important role in the property improvement of polymer nanocomposites.

스테아린산 또는 올레인산으로 변성된 ZnAl-LDH(Zn:Al = 2:1 몰비)를 공침법으로 합성하여 SAN 고분자에 여러 비율로 첨가하였다. SAN 복합재료들은 동일방향으로 회전하는 이축압출기를 통해 제조되었고 여러 시편으로 사출성형되었다. SAN 나노컴포지트들의 형태학, 투명성과 내열성은 TEM, XRD, UV-Vis 분광광도계와 TGA로 평가하였다. 모든 나노컴포지트들은 XRD 패턴에서 피크가 없는 박리된 또는 박리/삽입 혼합 구조를 보였고 TEM 사진에서는 LDH가 밀집되어 있는 섬 구조를 볼 수 있었다. OA-$Zn_2Al$ LDH를 포함하는 SAN 나노컴포지트들이 상대적으로 우수한 투과도를 보였다. 모든 SAN 나노컴포지트들은 2단계 열산화분해에서만 향상된 내열성을 보였다. 유기변성제와 고분자의 상호작용이 고분자 나노컴포지트의 물성 향상에 중요한 역할을 한다고 설명할 수 있다.

Keywords

References

  1. J. Njuguna and K. Pielochowski, Adv. Eng. Mater., 6, 193 (2004). https://doi.org/10.1002/adem.200305111
  2. L. A. Utracki, M. Sepehr, and E. Boccaleri, Polym. Adv. Technol., 18, 1 (2007). https://doi.org/10.1002/pat.852
  3. A. B. Morgan, Polym. Adv. Technol., 17, 206 (2006). https://doi.org/10.1002/pat.685
  4. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  5. A. Okada and A. Usuki, Macromol. Mater. Eng., 291, 1449 (2006). https://doi.org/10.1002/mame.200600260
  6. J. Zhang, F. Zhang, L. Ren, D. G. Evans, and X. Duan, Mater. Chem. Phys., 85, 207 (2004). https://doi.org/10.1016/j.matchemphys.2004.01.020
  7. T. Kulia, S. K. Srivastava, and A. K. Bhowmick, J. Appl. Polym. Sci., 111, 635 (2009). https://doi.org/10.1002/app.29117
  8. T. Kulia, S. K. Srivastava, and A. K. Bhowmick, Polym. Eng. Sci., 49, 585 (2009). https://doi.org/10.1002/pen.21286
  9. M. Zhang, P. Ding, L. Du, and B. Qu, Mater. Chem. Phys., 109, 206 (2008). https://doi.org/10.1016/j.matchemphys.2007.11.013
  10. T. Kulia, H. Acharya, S. K. Srivastava, and A. K. Bhowmick, J. Appl. Polym. Sci., 108, 1329 (2008). https://doi.org/10.1002/app.27834
  11. T. Kulia, H. Acharya, S. K. Srivastava, and A. K. Bhowmick, Polym. Compos., 30, 497 (2009). https://doi.org/10.1002/pc.20621
  12. T. Kulia, H. Acharya, S. K. Srivastava, and A. K. Bhowmick, J. Appl. Polym. Sci., 104, 1845 (2007). https://doi.org/10.1002/app.25840
  13. N. S. Kottegoda and W. Jones, Macromol. Symp., 222, 65 (2005). https://doi.org/10.1002/masy.200550406
  14. W. Chen and B. Qu, Polym. Degrad. Stabil., 90, 162 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.03.010
  15. W. D. Lee and S. S. Im. J. Polym. Sci. Part B: Polym. Phys., 45, 28 (2007). https://doi.org/10.1002/polb.20993
  16. W. D. Lee, S. S. Im, H.-M. Lim, and K.-J. Kim, Polymer, 47, 1364 (2006). https://doi.org/10.1016/j.polymer.2005.12.056
  17. C. M. C. Pereira, M. Herrero, F. M. Labajos, A. T. Marques, and V. Rives, Polym. Degrad. Stabil., 94, 939 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.03.009
  18. S. Kim, Elastomer, 43, 241 (2008).
  19. F.-A. He and L.-M. Zhang, Compos. Sci. Tech., 67, 3226 (2007). https://doi.org/10.1016/j.compscitech.2007.04.002
  20. F. R. Costa, U. Wagenknecht, and G. Heinrich, Polym. Degrad. Stabil., 92, 1813 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.009
  21. U. Costantino, A. Gallipoli, M. Nocchetti, G. Camino, F. Bellucci, and A. Frache, Polym. Degrad. Stabil., 90, 586 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.05.019
  22. L. Qiu, W. Chen, and B. Qu, Polymer, 47, 922 (2006). https://doi.org/10.1016/j.polymer.2005.12.017
  23. L.-C. Du and B.-J. Qu, Chin. J. Chem., 24, 1342 (2006). https://doi.org/10.1002/cjoc.200690250
  24. L.-C. Du and B.-J. Qu, Chin. J. Chem., 24, 1342 (2006). https://doi.org/10.1002/cjoc.200690250
  25. P. Ding and B. Qu, Polym. Eng. Sci., 46, 1153 (2006). https://doi.org/10.1002/pen.20568
  26. W. Chen, L. Feng, and B. Qu, Solid State Commun., 130, 259 (2004). https://doi.org/10.1016/j.ssc.2004.01.031
  27. Y. Ding, Z. Gui, J. Zhu, Y. Hu, and Z. Wang, Mater. Res. Bull., 43, 3212 (2007).
  28. L. Wang, S. Su, D. Chen, and C. A. Wilkie, Polym. Degrad. Stabil., 94, 1110 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.03.022
  29. S. Martinez-Gallegos, M. Herrero, and V. Rives, J. Appl. Polym. Sci., 109, 1388 (2008). https://doi.org/10.1002/app.28215
  30. R. Pucciariello, L. Tammaro, V. Villani, and V. Vittoria, J. Polym. Sci. Part B: Polym. Phys., 45, 945 (2007). https://doi.org/10.1002/polb.21106
  31. K. Dangon, S. Ambadapadi, A. Shaito, S. M. Ogbomo, V. DeLeon, T. D. Golden, M. Rahimi, K. Nguyen, P. S. Braterman, and N. A. D'Souza, J. Appl. Polym. Sci., 113, 1905 (2009). https://doi.org/10.1002/app.30159
  32. M. Zammarano, S. Bellayer, J. W. Gilman, M. Franceschi, F. L. Beyer, R. H. Harris, and S. Meriani, Polymer, 47, 652 (2006). https://doi.org/10.1016/j.polymer.2005.11.080
  33. K. Dangon, H. H. Chen, L. H. Innocentini-Mei, and N. A. D'souza, Polym. Int., 58, 133 (2009). https://doi.org/10.1002/pi.2503
  34. T.-M. Wu, S.-F. Hsu, Y.-F. Shih, and C.-S. Liao, J. Polym. Sci. Part B: Polym. Phys., 46, 1207 (2008). https://doi.org/10.1002/polb.21454
  35. M. Herrero, P. Benito, F. M. Labajos, V. Rives, Y. D. Zhu, G. C. Allen, and J. M. Adams, J. Solid State Chem., 183, 1645 (2010). https://doi.org/10.1016/j.jssc.2010.05.014
  36. P. Ding and B. Qu, J. Colloid Interface Sci., 291, 13 (2005). https://doi.org/10.1016/j.jcis.2005.08.056
  37. L. Du and B. Qu, Polym. Compos., 28, 131 (2007). https://doi.org/10.1002/pc.20279
  38. V. Realinho, M. Antunes, D. Arencon, A. I. Fernandez, and J. I. Velasco, J. Appl. Polym. Sci., 111, 2574 (2009). https://doi.org/10.1002/app.29288
  39. A. Becheri, M. Dürr, P. L. Nostro, and P. Baglioni, J. Nanopart. Res., 20, 679 (2008).

Cited by

  1. Mechanical properties of poly(styrene-co-acrylonitrile) nanocomposites containing organically modified layered double hydroxides vol.26, pp.12, 2015, https://doi.org/10.1002/pat.3577