DOI QR코드

DOI QR Code

Fe합금의 내 산화성과 황화성에 미치는 Al과 Cr 함량의 영향

Effect of Al and Cr contents on the High Temperature Oxidation- and Sulfidation-resistance of Fe Alloys

  • 김슬기 (성균관대학교 신소재공학과) ;
  • 이동복 (성균관대학교 신소재공학과)
  • Kim, Seul-Ki (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Dong-Bok (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 투고 : 2012.02.13
  • 심사 : 2012.04.30
  • 발행 : 2012.04.30

초록

Alloys of Fe-(5, 10, 15)Al and Fe-(10, 20, 30, 40)Cr were corroded at 700 and $800^{\circ}C$ for 70 hr in either atmospheric air or 1 atm of Ar+$1%SO_2$ gases. In these atmospheres, Fe-5Al and Fe-10Cr alloys displayed poor corrosion resistance. In atmospheric air, Fe-5Al alloys formed oxide nodules, while Fe-10Cr alloys formed thick scales and internal oxides. In Ar+$1%SO_2$ gases, Fe-5Al and Fe-10Cr alloys formed thick, nonadherent bi-layered scales, which grew primarily by the outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions. By contrast, in atmospheric air and Ar+$1%SO_2$ gases, Fe-(10, 15)Al and Fe-(20, 30, 40)Cr alloys displayed good corrosion resistance by forming $Al_2O_3$ and $Cr_2O_3$ layers on the surface, respectively.

키워드

참고문헌

  1. J. C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, Int. J. Pres. Ves. Pip. 85 (2008) 38. https://doi.org/10.1016/j.ijpvp.2007.06.011
  2. S. Y. Bae, H. G. Kang, H. S. Yun, C. W. Kim, D. B. Lee, B. S. Lim, Mater. Sci. Eng. A. 499 (2009) 262. https://doi.org/10.1016/j.msea.2008.04.076
  3. B. H. Choe, K. B. Yoon, N. H. Lee, S. Kim, G. J. Lee, K. H. Kim, D. I. Kwon, J. Kor. Inst. Met. Mater. 46 (2008) 276.
  4. D. B. Lee, J. Kor. Inst. Surf. Eng. 44 (2007) 219.
  5. S. Mrowec, M. Wedrychowska, Oxid. Met. 13 (1979) 481. https://doi.org/10.1007/BF00812774
  6. Z. G. Zhang, F. Gesmundo, P. Y. Hou, Y. Niu, Corros. Sci. 48 (2006) 741. https://doi.org/10.1016/j.corsci.2005.01.012
  7. Y. Okanda, I. Ohnaka, S. Nenno, J. Jpn. Inst. Met. 52 (1988) 878. https://doi.org/10.2320/jinstmet1952.52.9_878
  8. H. Hindam, D. P. Whittle, Oxid. Met. 18 (1982) 245. https://doi.org/10.1007/BF00656571
  9. F. H. Stott, G. C. Wood, J. Stringer, Oxid. Met. 4 (1995) 113.
  10. G. Y. Lai, High Temperature Corrosion and Materials Applications, ASM, USA (2007) 259.
  11. N. Birks, G. H. Meier, F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd Ed., Cambridge Univ. Press, UK (2006).
  12. T. I. Barry, A. T. Dinsdale, J. A. Gisby, B. Hallstedt, M. Hillert, S. Jonsson, B. Sundman, J. R. Taylor, J. Phase Equilib. 13 (1992) 459. https://doi.org/10.1007/BF02665760
  13. S. Mrowec, K. Przybylski, Oxid. Met. 23 (1985) 107. https://doi.org/10.1007/BF00659899
  14. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, USA (2008).
  15. I. Barin, Thermochemical Data of Pure Substances, VCH, Germany (1989).
  16. Y. Murata, M. Morinaga, N. Inagaki, M. Nakai, Mater. Trans. 43 (2002) 1258. https://doi.org/10.2320/matertrans.43.1258
  17. H. Ichimura, A. Kawana, J. Mater. Res. 9 (1994) 151. https://doi.org/10.1557/JMR.1994.0151

피인용 문헌

  1. Microstructure and High Temperature Oxidation Property of Fe–Cr–B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process vol.24, pp.2, 2018, https://doi.org/10.1007/s12540-018-0053-3