DOI QR코드

DOI QR Code

Projecting Climate Change Impact on the Potential Distribution of Endemic Plants (Megaleranthis saniculifolia) in Korea

기후변화에 따른 우리나라 특산식물의 잠재적 분포적지 변화 예측 - 모데미풀을 중심으로 -

  • Lee, Sang-Hyuk (Dept. of Environment and Forest Resources, Chungnam National University) ;
  • Jung, Huicheul (Korea Adaptation Center for Climate Change, Korea Environment Institute) ;
  • Choi, Jaeyong (Dept. of Environment and Forest Resources, Chungnam National University)
  • 이상혁 (충남대학교 산림환경자원학과) ;
  • 정휘철 (한국환경정책.평가연구원 국가기후변화적응센터) ;
  • 최재용 (충남대학교 산림환경자원학과)
  • Received : 2012.05.23
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

The importance of the genetic value of native plants has been raised recently after the adoption of Nagoya Protocol. In this stream, this research focused on the future distribution of Megaleranthis saniculifolia which has been evolved and adapted to Korean natural environment and classified as an endemic endangered species by IUCN. The distribution of the species in future are projected based on 'present potential distribution area' by adopting SRES (Special Report on Emission Scenarios) A1B climate change scenario using 6 types of GCM (General Circulation Model). The major results of the research are as follows : habitats of Megaleranthis saniculifolia. (1) will be reduced by 44% nation wide; (2) in Chungcheongngnam Do and Jeollanam Do will be the most affected; and (3) in high altitude in Chungcheongbuk Do, Gyunggi Do and Gangwon Do will be relatively less affected.

Keywords

References

  1. 구경아.공우석.김종규. 2001. 한반도 상록활엽수의 지리적 분포와 기후요소. 대한지리학회지 36(3) : 247-257.
  2. 국립환경과학원. 2006. 한반도 기후변화 진단지표 생물종 조사.
  3. 국립수목원. 2009a. 기후변화 취약 산림식물종 보전.적응사업 보고서.
  4. 국립수목원. 2009b. 한국 희귀식물 목록집.
  5. 권영아.권원태.부경온.최영은. 2007. A1B 시나리오 자료를 이용한 우리나라 아열대 기후구 전망. 대한지리학회지 42(3) : 355-367.
  6. 김무열. 2004. 한국의 특산식물, 솔과학.
  7. 오병윤.한종원.양선규.장창기.김윤영.지성진.강신호. 2009. 한국특산식물 모데미풀 보전을 위한 자생지특성 조사. 한국자원식물학회 학술심포지엄 p.95.
  8. 백승언. 2002. 한국식물대의 구계구분에 대한 재검토. 한국생태학회지 25(1) : 1-6.
  9. 서창완.박유리.최윤수. 2008. 위치자료의 종류에 따른 생물종 분포모형 비교 연구. 한국지형공간정보학회지 16(4) : 59-64.
  10. 송원경. 2011. 공간그래프 이론을 적용한 삵 서식지 네트워크 모형 개발, 서울대학교 박사학위논문.
  11. 이동근.김재욱. 2007. 한반도 지역의 기후변화에 의한 고산.아고산 식생 취약성 평가. 한국환경복원녹화기술학회지 10(6) : 110-119.
  12. 이종수.이우균.윤정호.송철철. 2006. 공간통계와 GIS를 이용한 소나무림과 참나무류림의 분포패턴. 한국임학회지 95(6) : 663-671.
  13. 장수길. 2008. 모데미풀의 분포와 자생지 생태 특성. 한국자원식물학회 학술심포지엄 pp.80.
  14. Collins, M., S. F. B. Tett, Cooper, C. 2001. "The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments." Climate Dynamics 17(1) : 61-81. https://doi.org/10.1007/s003820000094
  15. Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B. 2005. The Community Climate System Model (CCSM). Journal of Climate. special issue.
  16. Franklin, J. 1995. Predictive vegetation mapping : geographic modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19(4) : 474-499. https://doi.org/10.1177/030913339501900403
  17. Franklin, J. 2009. Mapping Secies Distributions : Spatial Inference and Prediction. Cambridge : Cambridge University Press.
  18. Gaisan, A. and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, in review.
  19. Gordon, H.B., Rotstayn, L.D., McGregor, J.L., Dix, M.R., Kowalczyk, E.A., O'Farrell, S.P., waterman, L.J., Hirst, A.C., Wilson, S.G., Collier, M.A., Watterson, I.G., and T.I., Elliott. 2002. The CSIRO Mk3 Climate System Model [Electronic publication]. Aspendale : CSIRO Atmospheric Research. CSIRO Atmospheric Research technical paper 60 : 130.
  20. IPCC. 2007. Climate Change : Physical science Basis Paris. France. pp.221.
  21. Jungclaus, J.H., Botzet, M., Haak, H., Keenlyside, N., Luo, J-J., Latif, M., Marotzke, J., Mikolajewics, U. and E. Roeckner. 2005. Ocean circulation and tropical variability in the AOGCM ECHAM5/ MPI-OM. Journal of Climate.
  22. Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S. 2005. The new IPSL climate system model : IPSL-CM4. Institute Pierre Simon Laplace. technical report.
  23. Phillips, S. J., Dudik, M. and Schapire, R. E. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning. pp.655-662.
  24. Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 : 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  25. Scinocca, J.F., McFarlane, N.A., Lazare, M, Li, J. and D. Plummer. 2008. The CCCma third generation AGCM and its extension into the middle atmosphere. Atmospheric Chemistry and Physics 8 : 7055-7074. https://doi.org/10.5194/acp-8-7055-2008
  26. http://www.worldclim.org/download(WorldClim 데이타 다운로드)

Cited by

  1. Species Distribution Modeling of Endangered Mammals for Ecosystem Services Valuation - Focused on National Ecosystem Survey Data - vol.17, pp.1, 2014, https://doi.org/10.13087/kosert.2014.17.1.111
  2. Predicting change of suitable plantation of Schisandra chinensis with ensemble of climate change scenario vol.25, pp.1, 2016, https://doi.org/10.14249/eia.2016.25.1.77
  3. Predicting the Changes in Cultivation Areas of Walnut Trees (Juglans sinensis) in Korea Due to Climate Change Impacts vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.399
  4. Developing Optimal Site Prediction Model for Evergreen Broad Leaved Trees, Machilus thunbergii in Warm Temperate Zone of the Korean Peninsula vol.48, pp.6, 2014, https://doi.org/10.14397/jals.2014.48.6.39
  5. 가야산국립공원의 식물상과 보전방안 vol.16, pp.1, 2013, https://doi.org/10.13087/kosert.2013.16.1.109