DOI QR코드

DOI QR Code

Short Reaction Mechanism for Premixed CH4-Air Flames at High Pressure

고압에서 예혼합 CH4-Air 화염의 축소 반응 메카니즘

  • Lee, Su-Gak (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Lee, Ki-Yong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 이수각 (안동대학교 기계공학과) ;
  • 이기용 (안동대학교 기계공학과)
  • Received : 2012.01.09
  • Accepted : 2012.03.30
  • Published : 2012.06.01

Abstract

A short reaction mechanism for premixed $CH_4$-air flames at high pressure was developed using a reduction method based on the combined application of the simulation error minimization connectivity method and the iterative species-removal sensitivity method. It consisted of 43 species and 554 elementary reactions under the condition that it produces less than 5% of the maximum error. The flame structures obtained using a detailed reaction mechanism and the short reaction mechanism were compared for $CH_4$-air flames with various initial temperatures and equivalence ratios at high pressure, and the results were in good agreement. Therefore, the short reaction mechanism developed could reproduce the flame speeds, temperatures, and concentrations of major and minor species at high pressure.

에러 최소 연결 방법(SEM-CM) 및 반복적 화학종 제거 민감도를 적용한 반응 메카니즘 감소 방법을 갖고, 고압에서 메탄-공기 예혼합 화염에 대한 축소 반응 메카니즘을 개발하였다. 최대 5% 이내의 에러 조건에서 얻어진 축소 반응 매카니즘은 43개 화학종과 554개 기초반응식으로 구성되어 있다. 고압조건에서 다양한 초기온도, 당량비를 갖는 메탄-공기 화염에 대하여 상세 화학반응 메카니즘과 축소 반응 메카니즘으로부터 얻어진 화염구조는 비교되었고, 결과는 잘 일치하였다. 따라서 개발된 축소 반응 메카니즘은 고압에서 화염속도, 화염온도, 주 화학종 및 부 화학종의 농도 등을 재생할 수 있다.

Keywords

References

  1. Gardiner, Jr. W.C. (Ed), 1999, Gas-Phase Combustion Chemistry, Springer.
  2. Curran H.J., Gaffuri P., Pitz W.J. and Westbrook C.K., 2002, "A Comprehensive Modeling Study of Iso-octane Oxidation," Combustion and Flame, Vol. 129, pp. 253-280. https://doi.org/10.1016/S0010-2180(01)00373-X
  3. Nagy, T. and Yuranyi, T., 2009, "Reduction of Very Large Reaction Mechanisms Using Methods Based on Simulation Error Minimization," Combustion and Flame, Vol. 156, pp. 417-428. https://doi.org/10.1016/j.combustflame.2008.11.001
  4. Smooke, M.D. and Giovangigli, V., 1991, "Formulation of the Premixed and Nonpremixed Test Problems," in Lecture Notes in Physics 384, Smooke, M.D. (Ed), Springer-Verlag.
  5. Lu, T. and Law, C.K., 2005. "A Directed Relation Graph Method for Mechanism Reduction," Proc. Combust. Inst., Vol. 30. pp. 1333-1341. https://doi.org/10.1016/j.proci.2004.08.145
  6. Zheng, X.L., Lu, T.F., and Law, C.K., 2007, "Experimental Counterflow Ignition Temperatures and Reaction Mechanism of 1,3-Butadiene," Proc. Combust. Inst., Vol. 31, pp. 367-375. https://doi.org/10.1016/j.proci.2006.07.182
  7. Pepiot-Desjardins, P. and Pitsch, H., 2008, "An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms," Combustion and Flame, Vol. 154, pp. 67-81. https://doi.org/10.1016/j.combustflame.2007.10.020
  8. Peters, N and Rogg, B. (Eds.), 1993, Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer-Verlag.
  9. Zsely, I.Gy., Nagy, T., Simmie, J.M. and Cirran, H.J., 2011, "Reduction of a Detailed Kinetic Model for the Igniton of Methane/Propane Mixtures at Gas Turbine Conditions Using Simulation Error Minimization Methods," Combustion and Flame, Vol. 158, pp. 1469-1479. https://doi.org/10.1016/j.combustflame.2010.12.011
  10. Nagy, T., Zsely, I.Gy., and Cirran, H.J., 2011, "Reduction of a Detailed Kinetic Model for the Igniton of Methane/Ethane/Propane Mixtures at Gas Turbine Conditions Using Simulation Error Minimization Methods," Proceedings of the European Combustion Meeting 2011, Cardfiff University, UK, June 28-July 1.
  11. ANSYS Inc., http://www.Ansys.com.
  12. CHEMKIN-CFD, Reaction Design Inc., San Diego, CA 92121, USA, http://www.Reactiondesign.com.
  13. Konnov, A. A., 2000, "Development and Validation of a Detailed Reaction Mechanism for the Combustion of Small Hydrocarbons," 28th Symposium (Int.) on Combustion, Edinburgh, Abstr. Symp. Pap. p. 317.
  14. CHEMKIN-PRO, Reaction Design Inc., San Diego, CA 92121, USA, http://www.Reactiondesign.com.
  15. Kee, R.J., Grcar, J.F., Smooke, M.D., and Miller, J.A., 1985, Sandia National Laboratories Report No. SAND 85-8240.
  16. Ku, X.J., Haq, M.Z., Lawes, M., and Woolley, R., 2000, "Laminar Burning Velocity and Markstein Lengths of Mathane-Air Mixtures," Combustion and Flame, Vol. 121, pp. 41-58. https://doi.org/10.1016/S0010-2180(99)00142-X
  17. Rozenchan, G., Zhu, D.L., Law, C.K., and Tse, S.D., 2002, "Outward Propagation, Beurning Velocities, and Chemical Eddects of Methane Flames up to 60 atm," Proc. Combust. Inst., Vol. 29, pp. 1461-1469. https://doi.org/10.1016/S1540-7489(02)80179-1
  18. Sharma, S.P., Agrawal, D.D., and Gupta, C.P., 1981, "The Pressure and Temperature Dependence of Burning Velocity in a Spherical Combustion Bomb," Proc. Combust. Inst., Vol. 18, pp. 493-501. https://doi.org/10.1016/S0082-0784(81)80055-0
  19. Rahim, F., Ulinksi, M., and Metghalchi, M., 2002, "Burning Velocity Measurements of Methane-Oxygen-Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements," Int. J. Engine Res., Vol. 3, pp. 81-92. https://doi.org/10.1243/14680870260127873
  20. Iijina, T. and Takeno, T., 1986, "Effects of Temperature and Pressure on Burning Velocity," Combustion and Flame, Vol. 65, pp. 35-43. https://doi.org/10.1016/0010-2180(86)90070-2
  21. Marshall, S.P., Stone, R., Heghes, C., Davies, T., and Cracknell R.F., 2010, "High Pressure Laminar Burning Velocity Measurements and Modelling of Methane and N-butane," Combustion Theory and Modelling, Vol. 14, pp. 519-540. https://doi.org/10.1080/13647830.2010.500021