DOI QR코드

DOI QR Code

원통형 다공성 유리막을 이용한 전기삼투 펌프의 연구

Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits

  • 투고 : 2011.12.28
  • 심사 : 2012.03.28
  • 발행 : 2012.06.01

초록

본 논문에서는 원통형 다공성 유리막을 이용한 전기삼투 펌프의 실험적 연구를 수행하였고, 장시간 작동을 평가하였다. 전기삼투 펌프의 성능은 탈이온수와 1 mM 붕산염 완충액을 이용하여 최대유량, 최대전류, 그리고 최대압력으로 표현하였다. 최대유량, 최대전류, 그리고 최대압력은 모두 이론에서 예측하는 것과 같이 전압이 증가할 때 선형적으로 증가하였다. 최대유량을 유체의 펌핑면적과 적용 전압으로 나눈 표준화 유량을 사용하여 원통형 다공성 유리막을 이용한 전기삼투 펌프와 평면형 다공성 유리막을 이용한 전기삼투 펌프의 성능을 비교하였다. 표준화 유량은 원통형 다공성 유리막을 이용할 때 평면형 다공성 유리막보다 대략 1.5 배 높은 값을 가졌고, 이는 원통형 다공성 유리막과 평면형 다공성 유리막의 기하학적 부분의 차이에 의한 것으로 판단되었다. 표준화 유량 값을 이용하여 동일한 전기삼투 펌프 부피에서 두 다공성 막을 비교하면, 원통형 전기삼투 펌프는 평면형 전기삼투 펌프에 비해 최대 원주율만큼의 펌핑면적을 증가할 수 있으므로 5 배 높은 유량을 얻었다. 원통형 전기삼투 펌프의 내부 전극에서 전기분해에 의해 발생하는 가스들은 나피온 튜브를 통하여 효과적으로 배출되었고, 이로 인해 3 시간 이상의 작동에서 성능의 감소는 발생되지 않았다.

In this study, we demonstrated the operation of an electroosmotic pump with cylindrical porous glass frits and evaluated its long-term operation. The performance of this electroosmotic pump was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM borate buffer. The maximum flow rate, current, and pressure linearly increase with voltage. The maximum flow rate is normalized by the pumping area and voltage for comparison of the performance between the electroosmotic pumps with cylindrical and planar frits. The normalized maximum flow rate of the cylindrical-type pump is higher than that of the planar-type pump because of their different geometries. The cylindrical-type electroosmotic pump has five times better performance than the planartype electroosmotic pump for a given pump package volume. It can operate stably for over 3 hours.

키워드

참고문헌

  1. Kundu, A.M., Jang, J. H., Gil, J. H., Jung, C. R., Lee, H. R., Kim, S. H., Ku, B., Oh, Y. S., 2007, "Micro- Fuel Cells- Currend Development and Applications," Journal of Power Sources, Vol. 170, No. 1, pp. 67-78. https://doi.org/10.1016/j.jpowsour.2007.03.066
  2. Lueke, J. and Moussa, W. A., 2011, "MEMS-Based Power Generation Techniques for Implantable Biosensing Applications," Sensors, Vol. 11, No. 2, pp. 1433-1460 https://doi.org/10.3390/s110201433
  3. Dutse, S. W. and Yusof, N. A., 2011, " Microfluidics- Based Lab-on-a-Chip Systems in DNA-Based Biosensing: An Overview," Sensors, Vol. 11, No. 6, pp. 5754-5768. https://doi.org/10.3390/s110605754
  4. Ashraf, M. W.M., Tayyaba, S. and Afzulpurkar N., 2011, "Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedial Applications," International Journal of Molecular Sciences, Vol. 12, No. 6, pp. 3648-3704. https://doi.org/10.3390/ijms12063648
  5. Jiang, L., Mikkelsen, J., Koo J. M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maverty, J. G., Prasher, R., Santiago, J. G., Kenny, T. W. and Goodson, K. E., 2002, "Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits," IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 3, pp. 347-354. https://doi.org/10.1109/TCAPT.2002.800599
  6. Buie, C. R., Kim, D., Liester, S. and Santiago, J. G., 2007, "An Electro-Osmotic Fuel Pump for Direct Methanol Fuel Cells," Electro Chemical and Solid- State Letters, Vol. 10, No. 11, pp. B196-B200. https://doi.org/10.1149/1.2772083
  7. Kwon, K. and Kim, D., 2010, "Air Pumps for Polymer Electrolyte Membrane Fuel Cells," Transactions of KSME (B), Vol. 34, No. 7, pp. 715-720. https://doi.org/10.3795/KSME-B.2010.34.7.715
  8. Litster, S., Suss, M. E. and Santiago, J. G., 2010, "A Two-Liquid Electroosmotic Pump Using Low Applied Voltage and Power," Sensors and Actuators A: Physics, Vol. 163, No. 1, pp. 311-314. https://doi.org/10.1016/j.sna.2010.07.008
  9. Yao, S., Hertzog, D. E., Zeng, S. and Santiago, J. G., 2003, "Porous Glass Electroosmotic Pumps: Design and Experiments," Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 143-153. https://doi.org/10.1016/S0021-9797(03)00730-6
  10. Kim, D., Posner J. D. and Santiago, J. G., 2008, "High Flow Rate per Power Electroosmotic Pumping Using Low Ion Density Solvents," Sensors and Actuators A: Physics, Vol. 141, No. 1, pp. 201-212. https://doi.org/10.1016/j.sna.2007.07.023
  11. Kwon, K. and Kim, D., 2011, "Characterization of Electroosmotic Pumps Using Methanol/Water Mixtures with Various Compositions," Sensors and Actuators A: Physics, Vol. 166, No. 1, pp. 88-93. https://doi.org/10.1016/j.sna.2010.12.016
  12. Zeng, S., Chen, C. H., Santiago, J. G., Chen, J. R., Zare, R. N., Tripp, J. A., Svec, F. and Frechet, J. M., 2002, "Electroosmtoci flow pumps with polymer frits," Sensors and Actuators B: Chemical, Vol. 82, No. 2-3, pp. 209-212. https://doi.org/10.1016/S0925-4005(01)01007-3
  13. Chen Y. F., Li, M. C., Hu, Y. H., Chang W. J. and Wang, C, C., 2008, "Low-Voltage Electroosmotic Pumping Using Porous Anodic Alumina Membranes," Microfluidics and Nanofluidics, Vol. 6, No. 2, pp. 145-162.
  14. Yao, S., Myers, A. M., Posner, J. D., Rose, K. and Santiago, J. G., 2006, "Electroosmotic Pumps Fabricated from Porous Silicon Membranes," Journal of Microelectromechanical Systems, Vol. 15, No. 3, pp. 717-728. https://doi.org/10.1109/JMEMS.2006.876796
  15. Zeng, S.M Chen, C. H., Mikkelsen, J. C. and Santiago, J. G., 2002, "Fabrication and Characterization of Electroosmotic Micropumps," Sensors and Actuators B: Chemical, Vol. 79, No. 2-3, pp. 107-114.
  16. Yao, S. and Santiago, J. G., 2003, "Porous Glass Electroosmotic Pumps: Theory," Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 133-142. https://doi.org/10.1016/S0021-9797(03)00731-8
  17. Griffiths, S. K. and Nilson, R. H., 2005, "The Efficiency of Electrokinetic Pumping at a Conditions of Maximum Work," Electrophoresis, Vol. 26, No. 1, pp. 351-361. https://doi.org/10.1002/elps.200406169
  18. Kwon, K., Park, C. W. and Kim, D., 2011, "Comparison of Electro-Osmotic Pumps with Two Different Types of Porous Glas Frits," Transactions of KSME (B), Vol. 35, No. 4, pp. 379-383.