DOI QR코드

DOI QR Code

Effects of Laser Source Geometry on Laser Shock Peening Residual Stress

레이저 광원 형상이 레이저 충격 피닝 잔류응력에 미치는 영향

  • Received : 2011.12.01
  • Accepted : 2012.04.17
  • Published : 2012.06.01

Abstract

In LSP (laser shock peening) treatment, the laser source geometries when the laser beam strikes the metal target area are diverse. The laser spot geometry affects the residual stress field beneath the treated surface of the metallic materials, which determines the characteristics of the pressure pulse. In this paper, detailed finite-element (FE) simulations on laser shock peening have been conducted in order to predict the magnitude and of the residual stresses and the depth affected in Inconel alloy 600 steel. The residual stress results are compared for circular, rectangular, and elliptical laser spot geometries. It is found that a circular spot can produce the maximum compressive residual stresses near the surface but generates tensile residual stresses at the center of the laser spot. In the depth direction, an elliptical laser spot produces the maximum compressive residual stresses. Circular and elliptical spots plastically affect the alloy to higher depths than a rectangular spot.

레이저 충격 피닝 처리 시 레이저 광원으로부터 금속표면에 조사되는 레이저 빔 형상은 다양하다. 레이저 형상은 표면에서 발생하는 압력파의 특성을 결정하기 때문에 금속 표면과 깊이 방향에 대한 잔류응력 분포에 영향을 미칠 수 있다. 본 논문에서는 레이저 충격 피닝 처리시 레이저 광원 형상이 인코넬 alloy 600 합금의 잔류응력에 미치는 영향을 분석하였다. 레이저 광원 형상은 원형, 사각형, 타원형 형상이 고려되었으며, 표면과 깊이 방향에 대한 압축잔류응력 특성을 비교하였다. 표면에서 생성되는 압축잔류응력은 원형 레이저 형상이 최대이지만 중심부에서 인장응력이 발생하고, 깊이 방향에서는 타원형 레이저 형상이 최대 압축잔류응력을 생성한다. 소성변형 발생 깊이는 사각형에 비해 원형과 타원형이 양호하다.

Keywords

References

  1. Ding, K. and Ye, L., 2006, "Laser Shock Peening Performance and Process Simulation," CRC Press, pp. 47-118.
  2. Ding, K. and Ye, L., 2006, "Simulation of Multiple Laser Shock Peening of a 35CD4 Steel Alloy," J.of Materials Processing Technology, Vol. 178, pp. 162-169. https://doi.org/10.1016/j.jmatprotec.2006.03.170
  3. Yang, S. Y., Choi, S. D., Jun, J. M. and Gong, B.C., 2010, "Improving the Residual Stress Characteristics of the Metal Surface by ND: YAG Laser Shock Peening," J. of the Korean Society of Machine Tool Engineering, Vol. 19, pp. 539-547.
  4. Wu, S., Huang, C., Wang, X. and Song, H., 2011, "A New Effective Method to Estimate the Effect of Laser Shock Peening," Int. J. of Impact Engineering, Vol. 38, pp. 322-329. https://doi.org/10.1016/j.ijimpeng.2010.11.008
  5. Ling, X., Peng, W. and Ma, G., 2008, "Influence of Laser Peening Parameters on Residual Stress Field of 304 Stainless Steel," J. of Pressure Vessel Technology, Vol. 130, No. 021120, pp. 1-8.
  6. Yang, C., Hodgson, D., Liu, Q. and Ye, L., 2008, "Geometrical Effects on Residual Stresses in 7075-T7451 Aluminum Alloy Rods Subject to Laser Shock Peening," J. of Materials Processing Technology, Vol. 201, pp. 303-309. https://doi.org/10.1016/j.jmatprotec.2007.11.147
  7. 2008, ABAQUS Version 6.9, User's manual, Dassault Systemes.
  8. Bang, B. W., Son, S. K., Kim, J. M. and Cho, C. D., 2009, "Residual Stress Prediction in LSP Surface Treatment by Using FEM," KSME-A, Vol. 33, No. 8, pp. 776-772.
  9. Kim, J. H. and Kim, Y. J., 2010, "Sensitivity Analyses of the Finite Element Parameters of Laser Shock Peening for Improving Fatigue Life of Metallic Components," KSME-A, Vol. 34, No.12, pp. 1821-1828. https://doi.org/10.3795/KSME-A.2010.34.12.1821
  10. Peyre, P., Fabbro, R. and Lieurade, P., 1996, "Laser Shock Processing of Aluminum Alloys. Application to High Cycle Fatigue Behaviour," Materials Science and Engineering, Vol. A210, pp. 102-113.
  11. Peyre, P., Fabbro, R. and Lieurade, P., 1996, "Laser Shock Processing of Aluminum Alloys. Application to High Cycle Fatigue Behaviour," Materials Science and Engineering, Vol. A210, pp. 102-113.
  12. Bang, B. W., Son, S. K., Kim, J. M. and Cho, C. D., 2009, "Residual Stress Prediction in LSP Surface Treatment by Using FEM," KSME-A, Vol. 33-8, pp. 776-772.
  13. Bugayev, A., Gupta, M. and Payne, R., 2006, "Laser Processing of Inconel 600 and Surface Structure," Optics and Lasers in Engineering, Vol. 44, pp. 102-111. https://doi.org/10.1016/j.optlaseng.2005.04.014
  14. Special metals, 2008, Inconel Alloy 600, Special Metals Corporation Publication, No. SMC-207, September.
  15. KAERI & Korea Uni., 2011, Simulation for Set-up of Laser Shock Peening Process Condition, Korea University, Korea, p. 65.
  16. Ballard, P., Fournier, J., Fabbro, R. and Frelat J., 1991, "Residual Stresses Induced by Laser-Shocks," J. de Physique IV, Vol. 1, pp. 487-581.
  17. Braisted, W., and Brockman, R., 1999, "Finite Element Simulation of Laser Shock Peening," Int. J. of Fatigue, Vol. 21, pp. 719-724. https://doi.org/10.1016/S0142-1123(99)00035-3
  18. Masse, J. E. and Barreau, G., 1995, "Laser Generation of Stress Waves in Metal," Surface and Coating Technology, Vol. 70, pp. 231-234. https://doi.org/10.1016/0257-8972(95)80020-4

Cited by

  1. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening vol.7, pp.12, 2014, https://doi.org/10.3390/ma7127925