DOI QR코드

DOI QR Code

Inhibition of Human Pancreatic Tumor Growth by Cytokine-Induced Killer Cells in Nude Mouse Xenograft Model

  • 투고 : 2012.10.16
  • 심사 : 2012.11.02
  • 발행 : 2012.12.31

초록

Pancreatic cancer is the fourth commonest cause of cancer-related deaths in the world. However, no adequate therapy for pancreatic cancer has yet been found. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against the human pancreatic cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 for 14 days. The resulting populations of CIK cells comprised 94% $CD3^+$, 4% $CD3^-CD56^+$, 41% $CD3^+CD56^+$, 11% $CD4^+$, and 73% $CD8^+$. This heterogeneous cell population was called cytokine-induced killer (CIK) cells. At an effector-target cell ratio of 100 : 1, CIK cells destroyed 51% of AsPC-1 human pancreatic cancer cells, as measured by the $^{51}Cr$-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 42% and 70% of AsPC-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for pancreatic cancer patients.

키워드

과제정보

연구 과제 주관 기관 : Chungbuk National University

참고문헌

  1. Hariharan, D., A. Saied, and H. M. Kocher. 2008. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford). 10: 58-62. https://doi.org/10.1080/13651820701883148
  2. Jemal, A., R. Siegel, J. Xu, and E. Ward. 2010. Cancer statistics, 2010. CA Cancer J. Clin. 60: 277-300. https://doi.org/10.3322/caac.20073
  3. Koido, S., S. Homma, A. Takahara, Y. Namiki, S. Tsukinaga, J. Mitobe, S. Odahara, T. Yukawa, H. Matsudaira, K. Nagatsuma, K. Uchiyama, K. Satoh, M. Ito, H. Komita, H. Arakawa, T. Ohkusa, J. Gong, and H. Tajiri. 2011. Current immunotherapeutic approaches in pancreatic cancer. Clin. Dev. Immunol. 2011: 267539.
  4. Burris, H. A. 3rd., M. J. Moore, J. Andersen, M. R. Green, M. L. Rothenberg, M. R. Modiano, M. C. Cripps, R. K. Portenoy, A. M. Storniolo, P. Tarassoff, R. Nelson, F. A. Dorr, C. D. Stephens, and D. D. Von Hoff. 1997. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15: 2403-2413. https://doi.org/10.1200/JCO.1997.15.6.2403
  5. Weng, D., B. Song, J. Durfee, V. Sugiyama, Z. Wu, S. Koido, S. K. Calderwood, and J. Gong. 2011. Induction of cytotoxic T lymphocytes against ovarian cancer-initiating cells. Int. J. Cancer 129: 1990-2001. https://doi.org/10.1002/ijc.25851
  6. Neoptolemos, J. P., D. D. Stocken, H. Friess, C. Bassi, J. A. Dunn, H. Hickey, H. Beger, L. Fernandez-Cruz, C. Dervenis, F. Lacaine, M. Falconi, P. Pederzoli, A. Pap, D. Spooner, D. J. Kerr, and M. W. Büchler; European Study Group for Pancreatic Cancer. 2004. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 350: 1200-1210. https://doi.org/10.1056/NEJMoa032295
  7. Kim, H. M., J. S. Kang, J. Lim, J. Y. Kim, Y. J. Kim, S. J. Lee, S. Song, J. T. Hong, Y. Kim, and S. B. Han. 2009. Antitumor activity of cytokine-induced killer cells in nude mouse xenograft model. Arch. Pharm. Res. 32: 781-787. https://doi.org/10.1007/s12272-009-1518-1
  8. Franceschetti, M., A. Pievani, G. Borleri, L. Vago, K. Fleischhauer, J. Golay, and M. Introna. 2009. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp. Hematol. 37: 616-628.e2. https://doi.org/10.1016/j.exphem.2009.01.010
  9. Schmidt-Wolf, I. G., R. S. Negrin, H. P. Kiem, K. G. Blume, and I. L. Weissman. 1991. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J. Exp. Med. 174: 139-149. https://doi.org/10.1084/jem.174.1.139
  10. Schmidt-Wolf, I. G., P. Lefterova, B. A. Mehta, L. P. Fernandez, D. Huhn, K. G. Blume, I. L. Weissman, and R. S. Negrin. 1993. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp. Hematol. 21: 1673-1679.
  11. Kim, H. M., J. Lim, S. K. Park, J. S. Kang, K. Lee, C. W. Lee, K. H. Lee, M. J. Yun, K. H. Yang, G. Han, S. W. Kwon, Y. Kim, and S. B. Han. 2007. Antitumor activity of cytokine-induced killer cells against human lung cancer. Int. Immunopharmacol. 7: 1802-1807. https://doi.org/10.1016/j.intimp.2007.08.016
  12. Kim, H. M., J. Lim, Y. D. Yoon, J. M. Ahn, J. S. Kang, K. Lee, S. K. Park, Y. J. Jeong, J. M. Kim, G. Han, K. H. Yang, Y. J. Kim, Y. Kim, and S. B. Han. 2007. Anti-tumor activity of ex vivo expanded cytokine-induced killer cells against human hepatocellular carcinoma. Int. Immunopharmacol. 7:1793-1801. https://doi.org/10.1016/j.intimp.2007.08.007
  13. Takayama, T., T. Sekine, M. Makuuchi, S. Yamasaki, T. Kosuge, J. Yamamoto, K. Shimada, M. Sakamoto, S. Hirohashi, Y. Ohashi, and T. Kakizoe. 2000. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356: 802-807 https://doi.org/10.1016/S0140-6736(00)02654-4
  14. Kornacker, M., G. Moldenhauer, M. Herbst, E. Weilguni, F. Tita-Nwa, C. Harter, M. Hensel, and A. D. Ho. 2006. Cytokine-induced killer cells against autologous CLL: direct cytotoxic effects and induction of immune accessory molecules by interferon-gamma. Int. J. Cancer 119: 1377-1382. https://doi.org/10.1002/ijc.21994
  15. Yang, X. J., J. A. Huang, W. Lei, Y. B. Zhu, and X. G. Zhang. 2006. Antitumor effects of cocultured dendritic cells and cytokine-induced killer cells on lung cancer in vitro and in vivo. Ai Zheng 25: 1329-1333.
  16. Kim, H. M., J. S. Kang, J. Lim, S. K. Park, K. Lee, Y. D. Yoon, C. W. Lee, K. H. Lee, G. Han, K. H. Yang, Y. J. Kim, Y. Kim, and S. B. Han. 2007. Inhibition of human ovarian tumor growth by cytokine-induced killer cells. Arch. Pharm. Res. 30: 1464-1470. https://doi.org/10.1007/BF02977372
  17. Wang, W., J. Epler, L. G. Salazar, and S. R. Riddell. 2006. Recognition of breast cancer cells by CD8+ cytotoxic T-cell clones specific for NY-BR-1. Cancer Res. 66: 6826-6833. https://doi.org/10.1158/0008-5472.CAN-05-3529
  18. Sun, S., X. M. Li, X. D. Li, and W. S. Yang. 2005. Studies on inducing apoptosis effects and mechanism of CIK cells for MGC-803 gastric cancer cell lines. Cancer Biother. Radiopharm. 20: 173-180.
  19. Verneris, M. R., M. Karami, J. Baker, A. Jayaswal, and R. S. Negrin. 2004. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood 103: 3065-3072. https://doi.org/10.1182/blood-2003-06-2125
  20. Han, S. B., C. W. Lee, Y. J. Jeon, N. D. Hong, I. D. Yoo, K. H. Yang, and H. M. Kim. 1999. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology 41: 157-164. https://doi.org/10.1016/S0162-3109(98)00063-0
  21. Kim, J. Y., Y. D. Yoon, J. M. Ahn, J. S. Kang, S. K. Park, K. Lee, K. B. Song, H. M. Kim, and S. B. Han. 2007. Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. Int. Immunopharmacol. 7: 78-87. https://doi.org/10.1016/j.intimp.2006.08.017
  22. Kalinski, P., Y. Nakamura, P. Watchmaker, A. Giermasz, R. Muthuswamy, and R. B. Mailliard. 2006. Helper roles of NK and CD8+ T cells in the induction of tumor immunity. Polarized dendritic cells as cancer vaccines. Immunol. Res. 36: 137-146. https://doi.org/10.1385/IR:36:1:137
  23. Takashima, K., H. Fujiwara, S. Inada, K. Atsuji, Y. Araki, T. Kubota, and H. Yamagishi. 2006. Tracking of green fluorescent protein (GFP)-labeled LAK cells in mice carrying B16 melanoma metastases. Anticancer Res. 26: 3327-3332.
  24. Raja Gabaglia, C., Y. Diaz de Durana, F. L. Graham, J. Gauldie, E. E. Sercarz, and T. A. Braciak. 2007. Attenuation of the glucocorticoid response during Ad5IL-12 adenovirus vector treatment enhances natural killer cell-mediated killing of MHC class I-negative LNCaP prostate tumors. Cancer Res. 67: 2290-2297. https://doi.org/10.1158/0008-5472.CAN-06-3399
  25. Thorne, S. H., R. S. Negrin, and C. H. Contag. 2006. Synergistic antitumor effects of immune cell-viral biotherapy. Science 311: 1780-1784. https://doi.org/10.1126/science.1121411
  26. Grabert, R. C., L. P. Cousens, J. A. Smith, S. Olson, J. Gall, W. B. Young, P. A. Davol, and L. G. Lum. 2006. Human T cells armed with Her2/neu bispecific antibodies divide, are cytotoxic, and secrete cytokines with repeated stimulation. Clin. Cancer Res. 12: 569-576. https://doi.org/10.1158/1078-0432.CCR-05-2005
  27. Alvarnas, J. C., Y. C. Linn, E. G. Hope, and R. S. Negrin. 2001. Expansion of cytotoxic CD3+ CD56+ cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 7: 216-222. https://doi.org/10.1053/bbmt.2001.v7.pm11349808
  28. Lu, P. H. and R. S. Negrin. 1994. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J. Immunol. 153: 1687-1696.
  29. Pievani, A., G. Borleri, D. Pende, L. Moretta, A. Rambaldi, J. Golay, and M. Introna. 2011. Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 118: 3301-3310. https://doi.org/10.1182/blood-2011-02-336321
  30. Kim, H. M., J. Lim, J. S. Kang, S. K. Park, K. Lee, J. Y. Kim, Y. J. Kim, J. T. Hong, Y. Kim, and S. B. Han. 2009. Inhibition of human cervical carcinoma growth by cytokine- induced killer cells in nude mouse xenograft model. Int. Immunopharmacol. 9: 375-380. https://doi.org/10.1016/j.intimp.2008.12.001

피인용 문헌

  1. The immune network in pancreatic cancer development and progression vol.33, pp.23, 2012, https://doi.org/10.1038/onc.2013.257
  2. Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer vol.22, pp.6, 2020, https://doi.org/10.3892/mmr.2020.11622
  3. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma vol.13, pp.9, 2021, https://doi.org/10.3390/cancers13092264