Abstract
In this study, the current-voltage curves for metals were measured using cyclic voltammetry. The relationship between the electrochemical properties and surface states of metals were investigated by Scanning Electron Microscope (SEM). In cyclic voltammetry, we used a 3-electrode system for the electrochemical measurements. The measurement was conducted at the condition that consists of the first reduction from the initial potential to -1350 mV, continuous oxidation to 1650 mV, and last reduction to the initial potential. The scan rates were 50, 100, 150 and 250 mV/s. The results show the C-V characteristics of metals to be for an irreversible process, which was caused by the oxidation current from cyclic voltammogram, when monoethanolamine (MEA) was used as a corrosion inhibitor. When we used MEA as a corrosion inhibitor, the diffusion coefficient was decreased as the concentration of electrolyte was increased. In the SEM images of copper, we observed an increase of surface corrosion at the increased electrolyte concentration. Addition of $1.0{\times}10^{-3}M$ corrosion inhibitor MEA reduced the effect of corrosion prevention due to the relatively large diffusion coefficient at the electrolyte concentration of 0.1N.
순환전압전류법을 사용하여 전류-전압 곡선을 측정하였다. 전기화학적 특성과 금속의 표면상태간의 관계는 전자현미경(SEM)을 사용하여 조사하였다. 그리고 순환전압전류법에 의한 전기화학적 측정은 3 전극 시스템을 사용하였다. 측정 범위는 초기 포텐셜에서 -1350 mV까지 환원시키고, 연속적으로 1650 mV까지 산화시키고, 다시 초기지점으로 환원시켜 측정하였다. 스캔속도는 50, 100, 150, 200 및 250 mV/s를 선정하였다. 그 결과, 부식억제로 모노에탄올아민(MEA)을 사용하여 금속의 C-V 특성은 순환전압전류법으로부터 산화 전류에 기인한 비가역 공정으로 나타났다. 부식억제제로 MEA을 사용하였을 경우에는 전해질의 농도가 증가할수록 확산계수가 감소하는 경향을 나타내었다. 그리고 구리의 SEM 이미지를 보면, 전해질 농도를 증가시키면 표면부식은 증가하였다. 부식억제제로 $1.0{\times}10^{-3}M$ MEA를 첨가시키면, 전해질 농도 0.1 N의 경우 확산계수가 상대적으로 커서 부식억제 효과가 적었다.