DOI QR코드

DOI QR Code

Characterization of Mold Releasing Agent Obtained from Carbon Black Suspension in Natural Polymer Solution

카본 블랙과 천연 고분자를 이용하여 제조한 금속 주조용 이형제의 특성

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Jin, Seok-Hwan (Department of Chemical Engineering, Changwon National University) ;
  • Park, Jung-Hyun (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과 고분자연구실) ;
  • 진석환 (창원대학교 화공시스템공학과 고분자연구실) ;
  • 박정현 (창원대학교 화공시스템공학과 고분자연구실)
  • Received : 2011.12.18
  • Accepted : 2012.02.24
  • Published : 2012.03.30

Abstract

A die casting mold releasing agent was prepared from aqueous mixture of powdery carbon black and water soluble natural polymeric materials such as xanthan gum(X-gum) and carboxymethyl cellulose(CMC), which were used as thickening agent as well as curing agent with aldehydes. The suitable concentration of natural polymers for stable dispersion of carbon black in water was 0.25 wt% of X-gum or 1.0 wt% of CMC. When CMC was used less than 1 wt%, the final carbon black disperion showed a rapid phase separation. The adhesion of carbon black releasing agent on glass plate was improved with the amount of crosslinking agent, glutaraldehyde and chain extender, oligosaccharide. However, the affinity of carbon black releasing agent prepared with X-gum was stronger than that with CMC on glass plate. The final carbon black mold releasing agents prepared under our mixing conditions can be applied to the production of castings of high quality with good workability and without worthening evironmental situations.

금속 주조시 사용되는 탄소이형제를 카본블랙과 점증제 겸 알데하이드 화합물의 경화제로 사용될 수 있는 수용성 고분자인 잔탄검(X-gum), 카르복시메틸셀룰로오스(CMC)을 혼합하여 제조하였다. 이 때 카본블랙의 안정한 분산을 위하여 0.25 wt%의 X-gum 또는 1.0 wt%의 CMC가 적당하였다. 1.0 wt% 보다 낮은 농도의 CMC를 사용했을 경우 카본블랙이 매우 쉽게 층분리되었다. 유리판에 대한 부착력은 경화제와, 구르탈알데하이드 및 사슬연장제인 올리고당의 양에 비례하였으며. X-gum으로 제조된 탄소 이형제는 CMC를 이용해 제조된 것보다 유리에 대한 부착력이 우수하였다. 결과적으로 본 실험의 최적 조건에서 제조된 탄소이형제는 친환경적으로 주조시에 적용할 수 있을 것으로 판단된다.

Keywords

References

  1. T. Hanano, U. S. Pat. 5,039,435 (1991).
  2. M. Y. Lee, K. E. Bae, B. H. Kim, S. C. Kim, and S. Y. Nam, Effect of dispersant on the dispersants of conductive carbon-black and properties of screen-printed source-drain electrodes for OTFTs, Polymer(Korea), 33(5), 397 (2009).
  3. J. S. Brower Jr, and R. F. Bernards, U. S. Pat. 6,623787B2 (2003).
  4. W. Handl, U. S. Pat. 2009/0305052 A1 (2009).
  5. L. H. H. O. Damink, P. J. Jdijkstra, M. J. A. van Luyn, P. B. van Wachem, and J. Feijen, Glutaraldehyde as a crosslinking agent for collagen-based biomaterials, J. Mat. Sci.: Materials in Medicine, 6, 460 (1995).
  6. K. Mera, M. Nagai, J. W. C. Brock, Y. Fujiwara, T. Murata, T. Maruyama, J. W. Baynes, M. Otagiri, and R. Nagai, Glutaraldehyde is an effective crosslinker for production of antibodies against advanced glycation end- products, J. Immunol. Methods, 334 (1-2), 82 (2008).
  7. I.-C. Kim and K.-H. Lee, Prepartion of poly(vinyl alcohol) coated various membrane composite nanofiltration membranes on various support membranes, Membrane J., 15(1), 34 (2005).
  8. K. J. Kim, S. B. Lee, and N. W. Han, Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde, Korean J. of Chem. Eng., 11(1), 41 (1994).
  9. G. G. Xu, C. Q. Yang, and Y. Den, Mechanism of paper wet strength development by polycarboxylic acids with different molecular weight and glutaraldehyde/poly(vinyl alcohol), J. Appl. Polym. Sci., 101(1), 277 (2009).
  10. Y.-J. Kim, K.-J. Yoon, and S.-W. Ko, Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde, J. Appl. Polym. Sci., 78(10), 1797 (2000).
  11. E. Emmanue, K. Hanna, C. Bazin, G. Keck, B. Clement, and Y. Perrodin, Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms, Environ. Int., 31(3), 399 (2005).
  12. ASTM, 2008 ASTM, Standard Test Methods for Measuring Adhesion by Tape Test, D 3359-08, Annual book of ASTM, Philadelphia, PA (2008).