Abstract
In automatic target recognition(ATR) systems, target extraction techniques are very important because ATR performance depends on segmentation result. So, this paper proposes a multi-sensor image fusion method based on adaptive weights. To incorporate the FLIR image and CCD image, we used information such as the bi-modality, distance and texture. A weight of the FLIR image is derived from the bi-modality and distance measure. For the weight of CCD image, the information that the target's texture is more uniform than the background region is used. The proposed algorithm is applied to many images and its performance is compared with the segmentation result using the single image. Experimental results show that the proposed method has the accurate extraction performance.
일반적인 ATR시스템에서는 대부분 FLIR센서에 의존하여 영상을 획득하나, 표적의 경계가 모호한 경우 견실한 표적 분할을 보장할 수 없는 한계점이 있다. 이에 본 논문은 FLIR과 CCD센서를 통해 획득된 영상에 대한 적응적 가중치 기반의 융합 방법을 제안함으로써 보다 정확한 표적 분할 성능을 재현한다. 융합을 위한 FLIR영상의 가중치는 모호한 경계를 구분하기 위한 bi-modality 척도와 표적 경계와의 거리를 통해 결정되고, CCD영상의 가중치는 표적과 배경의 질감차이를 나타내는 질감 척도와 거리 척도를 통해 도출된다. 제안 방법의 타당성 검증을 위하여 다양한 환경에서 획득된 표적 영상에 대한 제안 방법과 단일 센서 기반의 표적 분할의 성능 비교를 수행하였다.