DOI QR코드

DOI QR Code

Segmentation of Defective Regions based on Logical Discernment and Multiple Windows for Inspection of TFT-LCD Panels

TFT-LCD 패널 검사를 위한 지역적 분별에 기반한 결함 영역 분할 알고리즘

  • 정건희 (경북대학교 전자전기컴퓨터공학부) ;
  • 정창도 (경북대학교 전자전기컴퓨터학부) ;
  • 윤병주 (경북대학교 전자전기컴퓨터학부) ;
  • 이준재 (계명대학교 게임모바일콘텐츠학과) ;
  • 박길흠 (경북대학교 전자전기공학부)
  • Received : 2011.09.09
  • Accepted : 2011.11.11
  • Published : 2012.02.29

Abstract

This paper proposes an image segmentation for a vision-based automated defect inspection system on surface image of TFT-LCD(Thin Film Transistor Liquid Crystal Display) panels. TFT-LCD images have non-uniform brightness, which is hard to finding defective regions. Although there are several methods or proposed algorithms, it is difficult to divide the defect with high reliability because of non-uniform properties in the image. Kamel and Zhao disclosed a method which based on logical stage algorithm for segmentation of graphics and character. This method is a one of the local segmentation method that has a advantage. It is that characters and graphics are well segmented in an image which has non-uniform property. As TFT-LCD panel image has a same property, so this paper proposes new algorithm to segment regions of defects based on Kamel and Zhao's algorithm. Our algorithm has an advantage that there are a few ghost objects around the defects. We had experiments to prove performance in real TFT-LCD panel images, and comparing with the FFT(Fast Fourier Transform) method which is used a bandpass filter.

본 논문은 비전장비의 결함 검사 시스템을 위한 불균일한 휘도분포를 가지는 TFT-LCD 영상에서 결함 영역을 분할하는 방법을 다룬다. 불균일한 휘도분포 때문에 결함의 영역을 찾기 어려우며 이를 위해 많은 방법들이 제안되었다. Kamel과 Zhoa는 문자 및 그래픽의 분할을 위해 논리적 단계화 방법을 제안하였고, 이 방법은 공간상에서 수행되어지는 지역적 분할 방법으로 불균일한 분포 상에서도 문자가 잘 분할되는 장점이 있다. TFT-LCD의 저해상도 영상도 배경의 분포가 불균일하여 본 논문에서는 Kamel과 Zhoa의 방법을 답습하여 새로운 결함 영역 분할 방법을 제안한다. 제안한 방법은 결함주위에 발생하는 과검출(Ghost object)이 적은 장점이 있으며 제안 방법의 성능을 증명하기위해 실제 결함이 존재하는 TFT-LCD 영상을 이용하여 실험하고, 주파수상에서 많이 사용되는 FFT의 밴드패스 필터를 이용한 분할 방법과 비교하였다.

Keywords

References

  1. Mohamed Kamel and Aiguo Zhao, "Extraction of Binary Character/Graphics Images from Grayscale Document Images," CVGIP(Graphical Models And Image Processing) Vol. 55, No.3, pp. 203-217, 1993. https://doi.org/10.1006/cgip.1993.1015
  2. M. Yumi, T. Kohsei, and T. Satoshi "Quantitative evaluation of Visual Performance of Liquid Crystal Displays," Proc. SPIE, Algorithms and Systems for Optical Information Processing IV, Bahram J avidi Demetri Psaltis, Vol.4113, pp. 242-249, 2000.
  3. Y. Mori, K. Tanahashi, R. Yoshitake, and S. Tsuji, "Extraction and Evaluation of Mura Images in Liquid Crystal Displays," Proceedings of SPIE, Vol.447, pp. 299-306, 2001.
  4. Lars Heucke, Mirko Knaak, and H, Zhu, "A New Image Segmentation Method Based on Human Brightness Perception and Foveal Adaption," IEEE Signal Processing Letters, Vol.7, No.3, pp. 468-473, 1998.
  5. Lars Heucke, Mirko Knaak, and Reinhold Orglmester, "A New Image Segmentation Method on Human Brightness Perception and Foveal Adaption," IEEE Signal Processing Letter, Vol.7, No.6, pp. 129-131, 2000. https://doi.org/10.1109/97.844629
  6. D.A. Besley, E. Kuh, and R.E. Welsch, Regression Diagnosticx, John Wiley & Sons, 1980.
  7. G.B. Lee, C.G. Lee S.Y. Kim, and K.H. Park, "Adaptive Surface Fitting for Inspection of FPD Devices using Multilevel B-Spline Approximation," IEEE TENCON'05, Vol.1, pp. 144-148, 2005.
  8. S.J. Kim, Y.H. Hwang, B.G. Lee, and J.J. Lee, "B- Spline 기반의 FPD 패널 결함 검사," 한국 멀티미디어학회논문지, 제10권 제10호 pp. 1271-1283, 2007.
  9. S.I. Beak, W.S. Kim, T.M. Koo, I. Choi, and K.H. Park, "Inspection of Defect on LCD Panel Using Polynomial Approximation," IEEE TENCON'04, Vol.A21-24, pp. 235-238, 2004.
  10. 오종환, 박길흠, "인간 시각시스템의 주파수 감도를 이용한 TFT-LCD 결함 강조," 전자공학회논문지, 제44권, SP편, 제5호, pp. 20-27, 2007.
  11. P.H. Pretorius, M.A. King, S.J. Glick, T. -S. Pan and D.-S. Luo, "Reducing the effect of nonstationary resolution on activity quantitation with the frequency distance relationship in SPECT," IEEE Trans. on Nucl. Sci. Vol.43, No.6, pp. 3335-3341, 1996. https://doi.org/10.1109/23.552748
  12. A. Klatchko, and P. Pirogovsky, "Describing thin-film imaging with a Gaussian beam as potential flow," J. Appl. Phys. Vol.98, No.8, pp. 084504-084504-6, 2005. https://doi.org/10.1063/1.2085310
  13. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 3rd ed., Upper Saddle River, NJ, Prentice Hall, pp. 173-175, pp. 183, 2008.

Cited by

  1. TFT-LCD Defect Detection based on Histogram Distribution Modeling vol.18, pp.12, 2015, https://doi.org/10.9717/kmms.2015.18.12.1519
  2. TFT-LCD영상에서 결함 가능성에 따른 순차적 결함영역 분할 vol.23, pp.5, 2012, https://doi.org/10.9717/kmms.2020.23.5.633