DOI QR코드

DOI QR Code

Synthesis and Properties of Diarylamino-Substituted Linear and Dendritic Oligoquinolines for Organic Light-Emitting Diodes

  • Lee, Ho-Joon (Department of Chemistry, Kyungsung University) ;
  • Xin, Hao (Department of Chemical Engineering and Department of Chemistry, University of Washington) ;
  • Park, Seong-Min (Department of Chemistry, Kyungsung University) ;
  • Park, Seog-Il (Department of Chemistry, Kyungsung University) ;
  • Ahn, Taek (Department of Chemistry, Kyungsung University) ;
  • Park, Dong-Kyu (Department of Chemistry, Kyungsung University) ;
  • Jenekhe, Samson A. (Department of Chemical Engineering and Department of Chemistry, University of Washington) ;
  • Kwon, Tae-Woo (Department of Chemistry, Kyungsung University)
  • Received : 2011.12.19
  • Accepted : 2012.02.14
  • Published : 2012.05.20

Abstract

The coupling reaction between 5-bromo-3-phenylbenzo[c]isoxazole and diphenylamine followed by further condensation with a mono-, di- or ter-acetyl aromatic compound in the presence of diphenyl phosphate at $145^{\circ}C$ gave a novel asymmetric diarylquinolines, oligoquinolines with diphenylamine endgroups, and a first generation quinoline dendrimer in 41-82% isolated yield. The electrochemical and photophysical properties of the oligoquinolines were characterized by cyclic voltammograms (CVs) and spectroscopy. All the quinolines emit bright sky blue light due to charge transfer from quinoline group to diphenly amine with very high quantum efficiency (> 90%). Organic light-emitting diodes (OLEDs) were fabricated using these quinolines as emitting materials. Among different device architectures explored, OLEDs with a structure of ITO/PEDOT (40 nm)/TAPC (15 nm)/D-A quinoline (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al using TAPC as an electron blocking layer and TPBI as a hole blocking layer gave the best performance. A high external quantum efficiency in the range of 1.2-2.3% were achieved in all the quinolines with the best performance in BBQA(5). Our results indicate diarylamino-substituted oligoquinoline and dendrimer are promising materials for OLEDs applications.

Keywords

References

  1. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539. https://doi.org/10.1038/347539a0
  3. Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature (London) 1999, 397, 414. https://doi.org/10.1038/17087
  4. Bi, Y.; Stoy, P.; Adam, L.; He, B.; Krupinski, J.; Normandin, D.; Pongrac, R.; Seliger, L.; Watson, A.; Macor, J. E. Bioorg. Med. Chem. Lett. 2004, 14, 1577. https://doi.org/10.1016/j.bmcl.2003.12.090
  5. Sawada, Y.; Kayakiri, H.; Abe, Y.; Imai, K.; Mizutani, T.; Inamura, N.; Asano, M.; Aramori, I.; Hatori, C.; Katayama, A.; Oku, T.; Tanaka, H. J. Med. Chem. 2004, 47, 1617. https://doi.org/10.1021/jm030159x
  6. Vangapandu, S.; Jain, M.; Jain, R.; Kaur, S.; Singh, P. P. Bioorg. Med. Chem. 2004, 12, 2501. https://doi.org/10.1016/j.bmc.2004.03.045
  7. Burkhaller, J. H.; Edgerton, W. H. J. Am. Chem. Soc. 1951, 73, 4837. https://doi.org/10.1021/ja01154a108
  8. Ohta, Y.; Fukuda, S.; Baba, A.; Nagai, H.; Tsukuda, R.; Sohda, T.; Makino, H. Immunopharmacology 1996, 34, 17. https://doi.org/10.1016/0162-3109(96)00110-5
  9. Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. J. Med. Chem. 1996, 39, 5176. https://doi.org/10.1021/jm9509408
  10. Baba, A.; Makino, H.; Ohta, Y.; Sohda, T. Chem. Pharm. Bull. 1998, 46, 1130. https://doi.org/10.1248/cpb.46.1130
  11. Baba, A.; Oda, T.; Taketomi, S.; Notoya, K.; Nishimura, A.; Makino, Y.; Sohda, T. Chem. Pharm. Bull. 1999, 47, 369. https://doi.org/10.1248/cpb.47.369
  12. Tagawa, Y.; Miwa, K.; Yamashita, K.; Tsukuda, R.; Yoshimura, Y.; Tanayama, S.; Tanigawara, Y. Biopharm. Drug Dispos. 1999, 20, 11. https://doi.org/10.1002/(SICI)1099-081X(199901)20:1<11::AID-BDD147>3.0.CO;2-#
  13. Kwon, T. W.; Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4657. https://doi.org/10.1021/cm0494711
  14. Tonzola, C. J.; Hancock, J. M.; Babel, A.; Jenekhe, S. A. Chem. Commun. (Cambridge, United Kingdom) 2005, 5214.
  15. Stille, J. K. Macromolecules 1981, 14, 870. https://doi.org/10.1021/ma50004a077
  16. Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2003, 36, 8958. https://doi.org/10.1021/ma0348021
  17. Fushun L.; Zhiyuan, X.; Lixiang, W.; Xiabin, J.; Fosong, W. Tetrahedron Lett. 2002, 43, 3427. https://doi.org/10.1016/S0040-4039(02)00507-5
  18. Alam, M. M.; Tonzola, C. J.; Jenekhe, S. A. Macromolecules 2003, 36, 6577. https://doi.org/10.1021/ma0346299
  19. Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315. https://doi.org/10.1021/ma0100448
  20. Kappaun, S.; Rentenberger, S.; Pogantsch, A.; Zojer, E.; Mereiter, K.; Trimmel, G.; Saf, R.; Moeller, K. C.; Stelzer, F.; Slugovc, C. Chem. Mater. 2006, 18, 3539. https://doi.org/10.1021/cm060720q
  21. Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. Adv. Funct. Mater. 2006, 16, 1057. https://doi.org/10.1002/adfm.200500722
  22. Tonzola, C. J.; Hancock, J. M.; Babel, A.; Jenekhe, S. A. Chem. Commun. (Cambridge, United Kingdom) 2005, 5214.
  23. Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2005, 38, 9539. https://doi.org/10.1021/ma051280b
  24. Kulkarni, A. P.; Wu, P. T.; Kwon, T. W.; Jenekhe, S. A. J. Phys. Chem. B 2005, 109, 19584. https://doi.org/10.1021/jp0529772
  25. Zhu, Y.; Babel, A.; Jenekhe, S. A. Macromolecules 2005, 38, 7983. https://doi.org/10.1021/ma0510993
  26. Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Macromol. Chem. Phys. 2005, 206, 1271. https://doi.org/10.1002/macp.200500001
  27. Agrawal, A. K.; Jenekhe, S. A. Macromolecules 1991, 24, 6806. https://doi.org/10.1021/ma00025a044
  28. Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1992, 4, 95. https://doi.org/10.1021/cm00019a021
  29. Agrawal, A. K.; Jenekhe, S. A. Macromolecules 1993, 26, 895. https://doi.org/10.1021/ma00057a003
  30. Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1993, 5, 633. https://doi.org/10.1021/cm00029a010
  31. Agrawal, A. K.; Jenekhe, S. A.; Vanherzeele, H.; Meth, J. S. J. Phys. Chem. 1992, 96, 2837. https://doi.org/10.1021/j100186a011
  32. Lu, L.; Jenekhe, S. A. Macromolecules 2001, 34, 6249. https://doi.org/10.1021/ma010086w
  33. Zhu, Y.; Kulkarni, A. P.; Jenekhe, S. A. Chem. Mater. 2005, 17, 5225. https://doi.org/10.1021/cm050743p
  34. Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2002, 35, 9844. https://doi.org/10.1021/ma0208685
  35. Jegou, G.; Jenekhe, S. A. Macromolecules 2001, 34, 7926. https://doi.org/10.1021/ma0111562
  36. Cortes, E. C.; Martinez, I. E.; Mellado, O. G. J. Hetero. Chem. 2002, 39, 1189. https://doi.org/10.1002/jhet.5570390612
  37. Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631. https://doi.org/10.1021/ja036600q
  38. Masahiro, M.; Makoto, Y.; Yasuhiro, S.; Koji, N.; Mitsutaka, G. Tetrahedron 2006, 62, 8707. https://doi.org/10.1016/j.tet.2006.06.110
  39. Chang, D. W.; Kim, S.; Park, S. Y.; Yu, H.; Jang, D. J. Macromolecules 2000, 33, 7223. https://doi.org/10.1021/ma000126g
  40. Hewawasam, P.; Fan, W.; Knipe, J.; Moon, S. L.; Boissard, C. G.; Gribkoff, V. K.; Starrett, J. E. Bioorg. Med. Chem. Lett. 2002, 12, 1779. https://doi.org/10.1016/S0960-894X(02)00240-8
  41. Dyall, L. K.; Karpa, G. J. Aust. J. Chem. 1988, 41, 1231. https://doi.org/10.1071/CH9881231
  42. Konwar, D.; Boruah, R. C.; Sandhu, J. S.; Baruah, J. N. Synth. Commun. 1984, 14, 1053.
  43. Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1983, 56, 1682. https://doi.org/10.1246/bcsj.56.1682
  44. Chardonnens, L.; Ritter, R. Helv. Chim. Acta 1955, 38, 393. https://doi.org/10.1002/hlca.19550380203
  45. Tonzola, C. J.; Alam, M. M.; Kaminsky, W.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13548. https://doi.org/10.1021/ja036314e
  46. Xie, J.; Seto, C. T. Bioorg. Med. Chem. 2005, 13, 2981. https://doi.org/10.1016/j.bmc.2005.02.001
  47. Ram, S.; Ehrenkaufer, R. E. Tetrahedron Lett. 1984, 25, 3415. https://doi.org/10.1016/S0040-4039(01)91034-2
  48. Sapountzis, I.; Dube, H.; Lewis, R.; Gommermann, N.; Knochel, P. J. Org. Chem. 2005, 70, 2445. https://doi.org/10.1021/jo048132o
  49. Ueki, H.; Ellis, T. K.; Martin, C. H.; Boettiger, T. U.; Bolene, S. B.; Soloshonok, V. A. J. Org. Chem. 2003, 68, 7104. https://doi.org/10.1021/jo0301494
  50. Mitsch, A.; Wissner, P.; Silber, K.; Haebel, P.; Sattler, I.; Klebe, G.; Schlitzer, M. Bioorg. Med. Chem. 2004, 12, 4585. https://doi.org/10.1016/j.bmc.2004.07.010
  51. Tong, H.; Sun, H. H.; Xie, Z. Y.; Wang, L. X.; Jing, X. B.; Wang, F. S. Synth. Met. 2003, 137, 1115. https://doi.org/10.1016/S0379-6779(02)01104-9
  52. Mamo, A.; Nicoletti, S.; Tat, N. Cam. Molecules 2002, 7, 618. https://doi.org/10.3390/70800618
  53. Fan, X.; Zhang, Y. Tetrahedron Lett. 2002, 43, 7001. https://doi.org/10.1016/S0040-4039(02)01583-6
  54. Konwar, D.; Boruah, R. C.; Sandhu, J. S. Tetrahedron Lett. 1987, 28, 955. https://doi.org/10.1016/S0040-4039(00)95885-4
  55. Baum, J. S.; Condon, M. E.; Shook, D. A. J. Org. Chem. 1987, 52, 2983. https://doi.org/10.1021/jo00390a006
  56. Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. https://doi.org/10.1021/cm049473l
  57. Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1996, 8, 579. https://doi.org/10.1021/cm9504753
  58. Makoto, W.; Masakazu, N.; Toshihide, Y.; Yasuyuki, K. Tetrahedron Lett. 2000, 41, 481. https://doi.org/10.1016/S0040-4039(99)02096-1

Cited by

  1. Synthesis and Photophysical Property Studies of the 2,6,8-Triaryl-4-(phenylethynyl)quinazolines vol.19, pp.1, 2014, https://doi.org/10.3390/molecules19010795
  2. Diquinoline Derivatives as Materials for Potential Optoelectronic Applications vol.119, pp.23, 2015, https://doi.org/10.1021/jp512941z
  3. 2,4-Diarylquinolines: Synthesis, Absorption and Emission Properties vol.38, pp.4, 2012, https://doi.org/10.3184/174751914x13945617338344
  4. Copper-Catalyzed Electrophilic Amination of Arylboronic Acids with Anthranils: An Access to N-Aryl-2-aminophenones vol.85, pp.15, 2012, https://doi.org/10.1021/acs.joc.0c01109
  5. Introduction of Carbon Substituents into Nitroarenes via Nucleophilic Substitution of Hydrogen: New Developments vol.52, pp.21, 2012, https://doi.org/10.1055/s-0040-1707149