References
- Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
- Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539. https://doi.org/10.1038/347539a0
- Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature (London) 1999, 397, 414. https://doi.org/10.1038/17087
- Bi, Y.; Stoy, P.; Adam, L.; He, B.; Krupinski, J.; Normandin, D.; Pongrac, R.; Seliger, L.; Watson, A.; Macor, J. E. Bioorg. Med. Chem. Lett. 2004, 14, 1577. https://doi.org/10.1016/j.bmcl.2003.12.090
- Sawada, Y.; Kayakiri, H.; Abe, Y.; Imai, K.; Mizutani, T.; Inamura, N.; Asano, M.; Aramori, I.; Hatori, C.; Katayama, A.; Oku, T.; Tanaka, H. J. Med. Chem. 2004, 47, 1617. https://doi.org/10.1021/jm030159x
- Vangapandu, S.; Jain, M.; Jain, R.; Kaur, S.; Singh, P. P. Bioorg. Med. Chem. 2004, 12, 2501. https://doi.org/10.1016/j.bmc.2004.03.045
- Burkhaller, J. H.; Edgerton, W. H. J. Am. Chem. Soc. 1951, 73, 4837. https://doi.org/10.1021/ja01154a108
- Ohta, Y.; Fukuda, S.; Baba, A.; Nagai, H.; Tsukuda, R.; Sohda, T.; Makino, H. Immunopharmacology 1996, 34, 17. https://doi.org/10.1016/0162-3109(96)00110-5
- Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. J. Med. Chem. 1996, 39, 5176. https://doi.org/10.1021/jm9509408
- Baba, A.; Makino, H.; Ohta, Y.; Sohda, T. Chem. Pharm. Bull. 1998, 46, 1130. https://doi.org/10.1248/cpb.46.1130
- Baba, A.; Oda, T.; Taketomi, S.; Notoya, K.; Nishimura, A.; Makino, Y.; Sohda, T. Chem. Pharm. Bull. 1999, 47, 369. https://doi.org/10.1248/cpb.47.369
- Tagawa, Y.; Miwa, K.; Yamashita, K.; Tsukuda, R.; Yoshimura, Y.; Tanayama, S.; Tanigawara, Y. Biopharm. Drug Dispos. 1999, 20, 11. https://doi.org/10.1002/(SICI)1099-081X(199901)20:1<11::AID-BDD147>3.0.CO;2-#
- Kwon, T. W.; Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4657. https://doi.org/10.1021/cm0494711
- Tonzola, C. J.; Hancock, J. M.; Babel, A.; Jenekhe, S. A. Chem. Commun. (Cambridge, United Kingdom) 2005, 5214.
- Stille, J. K. Macromolecules 1981, 14, 870. https://doi.org/10.1021/ma50004a077
- Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2003, 36, 8958. https://doi.org/10.1021/ma0348021
- Fushun L.; Zhiyuan, X.; Lixiang, W.; Xiabin, J.; Fosong, W. Tetrahedron Lett. 2002, 43, 3427. https://doi.org/10.1016/S0040-4039(02)00507-5
- Alam, M. M.; Tonzola, C. J.; Jenekhe, S. A. Macromolecules 2003, 36, 6577. https://doi.org/10.1021/ma0346299
- Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315. https://doi.org/10.1021/ma0100448
- Kappaun, S.; Rentenberger, S.; Pogantsch, A.; Zojer, E.; Mereiter, K.; Trimmel, G.; Saf, R.; Moeller, K. C.; Stelzer, F.; Slugovc, C. Chem. Mater. 2006, 18, 3539. https://doi.org/10.1021/cm060720q
- Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. Adv. Funct. Mater. 2006, 16, 1057. https://doi.org/10.1002/adfm.200500722
- Tonzola, C. J.; Hancock, J. M.; Babel, A.; Jenekhe, S. A. Chem. Commun. (Cambridge, United Kingdom) 2005, 5214.
- Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2005, 38, 9539. https://doi.org/10.1021/ma051280b
- Kulkarni, A. P.; Wu, P. T.; Kwon, T. W.; Jenekhe, S. A. J. Phys. Chem. B 2005, 109, 19584. https://doi.org/10.1021/jp0529772
- Zhu, Y.; Babel, A.; Jenekhe, S. A. Macromolecules 2005, 38, 7983. https://doi.org/10.1021/ma0510993
- Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Macromol. Chem. Phys. 2005, 206, 1271. https://doi.org/10.1002/macp.200500001
- Agrawal, A. K.; Jenekhe, S. A. Macromolecules 1991, 24, 6806. https://doi.org/10.1021/ma00025a044
- Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1992, 4, 95. https://doi.org/10.1021/cm00019a021
- Agrawal, A. K.; Jenekhe, S. A. Macromolecules 1993, 26, 895. https://doi.org/10.1021/ma00057a003
- Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1993, 5, 633. https://doi.org/10.1021/cm00029a010
- Agrawal, A. K.; Jenekhe, S. A.; Vanherzeele, H.; Meth, J. S. J. Phys. Chem. 1992, 96, 2837. https://doi.org/10.1021/j100186a011
- Lu, L.; Jenekhe, S. A. Macromolecules 2001, 34, 6249. https://doi.org/10.1021/ma010086w
- Zhu, Y.; Kulkarni, A. P.; Jenekhe, S. A. Chem. Mater. 2005, 17, 5225. https://doi.org/10.1021/cm050743p
- Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2002, 35, 9844. https://doi.org/10.1021/ma0208685
- Jegou, G.; Jenekhe, S. A. Macromolecules 2001, 34, 7926. https://doi.org/10.1021/ma0111562
- Cortes, E. C.; Martinez, I. E.; Mellado, O. G. J. Hetero. Chem. 2002, 39, 1189. https://doi.org/10.1002/jhet.5570390612
- Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631. https://doi.org/10.1021/ja036600q
- Masahiro, M.; Makoto, Y.; Yasuhiro, S.; Koji, N.; Mitsutaka, G. Tetrahedron 2006, 62, 8707. https://doi.org/10.1016/j.tet.2006.06.110
- Chang, D. W.; Kim, S.; Park, S. Y.; Yu, H.; Jang, D. J. Macromolecules 2000, 33, 7223. https://doi.org/10.1021/ma000126g
- Hewawasam, P.; Fan, W.; Knipe, J.; Moon, S. L.; Boissard, C. G.; Gribkoff, V. K.; Starrett, J. E. Bioorg. Med. Chem. Lett. 2002, 12, 1779. https://doi.org/10.1016/S0960-894X(02)00240-8
- Dyall, L. K.; Karpa, G. J. Aust. J. Chem. 1988, 41, 1231. https://doi.org/10.1071/CH9881231
- Konwar, D.; Boruah, R. C.; Sandhu, J. S.; Baruah, J. N. Synth. Commun. 1984, 14, 1053.
- Nishino, H.; Kurosawa, K. Bull. Chem. Soc. Jpn. 1983, 56, 1682. https://doi.org/10.1246/bcsj.56.1682
- Chardonnens, L.; Ritter, R. Helv. Chim. Acta 1955, 38, 393. https://doi.org/10.1002/hlca.19550380203
- Tonzola, C. J.; Alam, M. M.; Kaminsky, W.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13548. https://doi.org/10.1021/ja036314e
- Xie, J.; Seto, C. T. Bioorg. Med. Chem. 2005, 13, 2981. https://doi.org/10.1016/j.bmc.2005.02.001
- Ram, S.; Ehrenkaufer, R. E. Tetrahedron Lett. 1984, 25, 3415. https://doi.org/10.1016/S0040-4039(01)91034-2
- Sapountzis, I.; Dube, H.; Lewis, R.; Gommermann, N.; Knochel, P. J. Org. Chem. 2005, 70, 2445. https://doi.org/10.1021/jo048132o
- Ueki, H.; Ellis, T. K.; Martin, C. H.; Boettiger, T. U.; Bolene, S. B.; Soloshonok, V. A. J. Org. Chem. 2003, 68, 7104. https://doi.org/10.1021/jo0301494
- Mitsch, A.; Wissner, P.; Silber, K.; Haebel, P.; Sattler, I.; Klebe, G.; Schlitzer, M. Bioorg. Med. Chem. 2004, 12, 4585. https://doi.org/10.1016/j.bmc.2004.07.010
- Tong, H.; Sun, H. H.; Xie, Z. Y.; Wang, L. X.; Jing, X. B.; Wang, F. S. Synth. Met. 2003, 137, 1115. https://doi.org/10.1016/S0379-6779(02)01104-9
- Mamo, A.; Nicoletti, S.; Tat, N. Cam. Molecules 2002, 7, 618. https://doi.org/10.3390/70800618
- Fan, X.; Zhang, Y. Tetrahedron Lett. 2002, 43, 7001. https://doi.org/10.1016/S0040-4039(02)01583-6
- Konwar, D.; Boruah, R. C.; Sandhu, J. S. Tetrahedron Lett. 1987, 28, 955. https://doi.org/10.1016/S0040-4039(00)95885-4
- Baum, J. S.; Condon, M. E.; Shook, D. A. J. Org. Chem. 1987, 52, 2983. https://doi.org/10.1021/jo00390a006
- Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. https://doi.org/10.1021/cm049473l
- Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1996, 8, 579. https://doi.org/10.1021/cm9504753
- Makoto, W.; Masakazu, N.; Toshihide, Y.; Yasuyuki, K. Tetrahedron Lett. 2000, 41, 481. https://doi.org/10.1016/S0040-4039(99)02096-1
Cited by
- Synthesis and Photophysical Property Studies of the 2,6,8-Triaryl-4-(phenylethynyl)quinazolines vol.19, pp.1, 2014, https://doi.org/10.3390/molecules19010795
- Diquinoline Derivatives as Materials for Potential Optoelectronic Applications vol.119, pp.23, 2015, https://doi.org/10.1021/jp512941z
- 2,4-Diarylquinolines: Synthesis, Absorption and Emission Properties vol.38, pp.4, 2012, https://doi.org/10.3184/174751914x13945617338344
- Copper-Catalyzed Electrophilic Amination of Arylboronic Acids with Anthranils: An Access to N-Aryl-2-aminophenones vol.85, pp.15, 2012, https://doi.org/10.1021/acs.joc.0c01109
- Introduction of Carbon Substituents into Nitroarenes via Nucleophilic Substitution of Hydrogen: New Developments vol.52, pp.21, 2012, https://doi.org/10.1055/s-0040-1707149