Facile Synthesis of 5-Hydroxy-3-pyrrolin-2-ones from Morita-Baylis-Hillman Adducts

Cheol Hee Lim, Sung Hwan Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received January 31, 2012, Accepted February 14, 2012

An efficient synthetic method of various 5-hydroxy-3-pyrrolin-2-one derivatives has been developed starting from the MBH adducts. In addition, some synthetic applicability of the prepared 5-hydroxy-3-pyrrolin-2-ones was demonstrated including the synthesis of lactam-fused tetrahydroisoquinolines.

Key Words : 5-Hydroxy-3-pyrrolin-2-ones, Morita-Baylis-Hillman adducts, Hemiaminals

Introduction

Recently, we have reported the synthesis of γ-hydroxybutenolides from homoallylic alcohols which were prepared from the Morita-Baylis-Hillman (MBH) adducts. ${ }^{1,2}$ As a continuous work we envisioned that 5-hydroxy-3-pyrrolin2 -ones (γ-hydroxy- γ-butyrolactams) ${ }^{3-5}$ could also be prepared using the same homoallylic alcohol, as shown in Scheme 1. The 5-hydroxy-3-pyrrolin-2-one moiety was found in many biologically active compounds including oteromycin, ${ }^{3 \mathrm{~d}}$ UCS1025A, ${ }^{3 \mathrm{~b}}$ PI-091, ${ }^{3 \mathrm{e}}$ and quinolactacin C. ${ }^{3 \mathrm{e}}$ Thus, numerous approaches have been reported for the synthesis of 5-hydroxy-3-pyrrolin-2-ones, ${ }^{3-5}$ and these compounds have also been used as useful synthetic intermediates in organic synthesis. ${ }^{4 \mathrm{ddf}-\mathrm{h}}$

Results and Discussion

Previously, we have reported the synthesis of poly-substituted pyrrole 6 a by the reaction of benzylamine and α -methylene- γ-ketoester 3a, prepared from MBH bromide 1a via an indium-mediated Barbier reaction with benzaldehyde and a subsequent oxidation of the alcohol moiety with pyridinium chlorochromate (PCC). ${ }^{6}$ Pyrrole 6a was formed
via the Michael-type cyclization of enamine intermediate II and a following aerobic oxidation, as shown in Scheme $2 .{ }^{6}$ We thought that the formation of an enamine intermediate II might be an obstacle for the synthesis of 5-hydroxy-3-pyrrolin-2-one derivative 5a. Thus, we examined the reaction of benzylamine and $\mathbf{4 a}$, prepared by double bond isomerization of 3a with $E t_{3} \mathrm{~N} .{ }^{7}$ We expected that a tetrahedral hemiaminal intermediate \mathbf{I} could be cyclized to $\mathbf{5 a}$ under mild acidic conditions instead of dehydration to the corresponding imine III or enamine II. To our delight, the reaction of $\mathbf{4 a}$ and benzylamine in toluene in the presence of AcOH afforded 5a in high yield (93\%).

Encouraged by the successful synthesis of 5-hydroxy-3-pyrrolin-2-one 5a, we examined the synthesis of various 5-hydroxy-3-pyrrolin-2-ones from three representative γ-ketoesters 4a-c. The whole results are summarized in Table 1.

Scheme 1

Scheme 2

Table 1. Synthesis of 5-hydroxy-3-pyrrolin-2-one derivatives

Entry Substrate | Conditions |
| :--- |
| ienzylamine (2.0 equiv) |
| AcOH (1.0 equiv) |
| toluene, reflux, 5 h |

${ }^{a} \mathrm{Ar}$ is p-methoxyphenyl. ${ }^{b}$ Dehydration product $\mathbf{1 1}$ (see Scheme 4) was isolated in low yield (11\%).

The key starting materials $4 \mathrm{a}-\mathbf{c}$ were prepared according to our previous papers ${ }^{1,6,7}$ via a three-step procedure, namely (i) an indium-mediated Barbier reaction of the corresponding MBH bromide and an aldehyde to prepare a homoallylic alcohol 2, PCC oxidation to α-methylene- γ-ketoester 3, and a subsequent $\mathrm{Et}_{3} \mathrm{~N}$-mediated isomerization of double bond to form 4. The reactions of 4a-c with various amine derivatives were examined including benzylamine, p-methoxybenzylamine, phenethylamine, 3-phenyl-1-propylamine, and cyclohexylamine.

As shown in Table 1, the reactions of $\mathbf{4 a}$ and p-methoxybenzylamine (entry 2), phenethylamine (entry 3), and 3-phenyl-1-propylamine (entry 4) provided the corresponding 5-hydroxy-3-pyrrolin-2-ones 5b-d in good yields (84-91\%).

However, the reaction of $\mathbf{4 a}$ and cyclohexylamine did not afford the expected product in any trace amount, presumably due to the steric crowdedness during the formation of a hemiaminal intermediate (vide infra). The reactions of $\mathbf{4 b}$ and benzylamine (entry 5) and phenethylamine (entry 6) gave $\mathbf{5 e}$ and $\mathbf{5 f}$ in good yields (70-87\%). It is interesting to note that the reaction of $\mathbf{4 b}$ and cyclohexylamine produced $\mathbf{5 g}$ in good yield (77\%), as shown in entry 7. The result stated that a steric hindrance could be a major reason for the failure in the reaction of $\mathbf{4 a}$ and cyclohexylamine, as noted above. The reaction of a cinnamyl derivative $\mathbf{4 c}$ and benzylamine (entry 8) also produced $\mathbf{5 h}$ in good yield (79%). However, the reaction of $\mathbf{4 c}$ and cyclohexylamine failed due to the same steric reason as in the case of $\mathbf{4 a}$ (vide supra). Unfortunately, the reactions with aniline and $\mathbf{4 a}$ or $\mathbf{4 b}$ failed completely.

The preparation of N -unsubstituted lactam was examined using $\mathrm{NH}_{4} \mathrm{OAc}$ under the same conditions (toluene, AcOH , reflux); however, we could not obtain the product $5 \mathbf{i}$ in any trace amount. When we used $\mathrm{NH}_{4} \mathrm{OH}$ in MeOH at room temperature, 5 -aminolactone 7^{8} was obtained in good yield (81%) instead of the expected 5 -hydroxylactam $\mathbf{5 i}$, as shown in Scheme 3. Compound $\mathbf{5 i}$ was formed in only trace amount (5%). The reason for the selective formation of 5 -aminolactone 7 is not clear at this stage. The benzylation of 7 was carried out in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile, and we obtained the corresponding N-benzyl derivative $\mathbf{8}$ in moderate yield (60%) along with appreciable amounts of 5hydroxylactam $5 \mathbf{i}$ (11\%) and a trace amount of its benzyl derivative 5a (3\%). The formations of $\mathbf{5 i}$ and $\mathbf{5 a}$ could be explained as follows: (i) ring-opening of 7 to a hemiaminal intermediate IV by a trace amount of moisture in the reaction mixture, in-situ formation of the corresponding benzyl ester \mathbf{V}, a subsequent ring-closure to lactam $\mathbf{5 i}$, and the final N -benzylation to $\mathbf{5 a}{ }^{5 \mathrm{c}}$ In a separate experiment, we observed that the benzylation of $\mathbf{5 i}$ to $\mathbf{5 a}$ required a long time.

In order to show the synthetic applicability of prepared compounds, we examined the syntheses of 5-alkoxy-3-pyrrolin-2-one derivative $\mathbf{9}^{9}$ and lactam-fused isoquinoline derivatives 10 and 12. ${ }^{10}$ As shown in Scheme 4, the reaction of $\mathbf{5 a}$ and MeOH in the presence of a catalytic amount of p TsOH in refluxing toluene afforded compound 9 in good yield (85%). The cyclization reaction of $\mathbf{5 c}$ was carried out in $\mathrm{CF}_{3} \mathrm{COOH}$ in short time, and a pyrrolo $[2,1-a]$ isoquinolin-3-one derivative 10 was obtained in good yield (84\%) via the well-known N-acyliminium ion cyclization mechanism. ${ }^{10}$ Similarly, compound 12 was obtained in good yield (83\%) from $\mathbf{5 f}$ under the similar reaction conditions. However, the reaction of $\mathbf{5 f}$ at room temperature produced a dehydration product 11 (vide supra, entry 6 in Table 1) in 81%. This compound $\mathbf{1 1}$ was cyclized to $\mathbf{1 2}$ at refluxing temperature in moderate yield (52\%). The reaction of N-benzyl derivative 5a under the same conditions did not produce the corresponding cyclized product.

In summary, we disclosed an efficient synthesis of various 5-hydroxy-3-pyrrolin-2-one derivatives starting from the MBH adducts. In addition, some synthetic applicability of

Scheme 3

Scheme 4
the prepared 5-hydroxy-3-pyrrolin-2-ones was demonstrated including the synthesis of lactam-fused tetrahydroisoquinolines.

Experimental Section

The starting materials 4a-c were prepared as reported previously. ${ }^{7}$
Typical Procedure for the Synthesis of 5a. A stirred mixture of $\mathbf{4 a}(140 \mathrm{mg}, 0.5 \mathrm{mmol})$, benzyl amine (107 mg , 1.0 mmol), acetic acid ($30 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene (2.0 mL) was heated to reflux for 5 h . After the usual aqueous extractive workup and column chromatographic purification process (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$, 5:1:1), product 5a was obtained as a pale yellow solid, $165 \mathrm{mg}(93 \%)$. Other compounds were synthesized similarly, and the spectroscopic data of $\mathbf{5 a} \mathbf{- h}$ are as follows.

Compound 5a: 93\%; pale yellow solid, mp $128-130{ }^{\circ} \mathrm{C}$; IR (KBr) 3310, 1677, $1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.35(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.23,43.03,93.08,126.28$, 127.03, 128.15, 128.24, 128.29, 128.41, 128.59, 128.63, 128.66, 129.49, 131.76, 137.09, 138.18, 153.29, 171.00; ESIMS m/z $378\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 81.10; H, 5.96; N, 3.94. Found: C, 80.94; H, 6.17; N, 3.89.

Compound 5b: 84%; white solid, mp $136-137{ }^{\circ} \mathrm{C}$; IR (KBr) $3421,1668,1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.05(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) 7.22-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.21,42.45,55.21,93.09,113.60$, 126.30, 128.14, 128.27, 128.42, 128.55, 128.65, 129.55, 130.17, 130.41, 131.83, 137.28, 153.16, 158.54, 170.86; ESIMS m/z $408\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, $77.90 ; \mathrm{H}, 6.01$; N, 3.63. Found: C, 77.98; H, 6.32; N, 3.54.

Compound 5c: 91%; pale yellow solid, mp $158-160{ }^{\circ} \mathrm{C}$; IR (KBr) 3213, 1668, $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.98(\mathrm{~m}, 1 \mathrm{H})$, 3.03 (br s, 1H), 3.11-3.21 (m, 1H), 3.52-3.61 (m, 1H), 7.04$7.08(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.33(\mathrm{~m}, 11 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.21,34.60,41.35,92.54,126.11$, $126.28,128.19,128.39,128.42,128.51,128.60,128.67$, 128.77, 129.64, 131.81, 137.42, 139.37, 152.96, 171.05; ESIMS m/z $392\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 81.27; H, 6.27; N, 3.79. Found: C, 81.03; H, 6.51; N, 3.73.

Compound 5d: 90%; white solid, mp $142-144{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3314,1677,1447 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.55-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.35-$ $3.45(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.32(\mathrm{~m}, 11 \mathrm{H}), 7.36-$ 7.39 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.22,29.93$, 33.38, 39.23, 92.69, 125.66, 126.11, 128.19 (2C), 128.23, 128.30, 128.45, 128.57, 128.66, 129.68, 131.83, 137.44,
141.64, 152.85, 171.13; ESIMS m/z $406\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 81.43; H, 6.57; N, 3.65. Found: C, 81.22; H, 6.54; N, 3.48.

Compound 5e: 87%; pale yellow solid, mp 158-159 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3211, 1667, $1449 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.43(\mathrm{~m}$, $8 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 9.91, 23.49, 41.88, 90.72, 127.17, 127.86, 128.44, 128.49 (2C), 128.57, $128.75,132.19,138.65,153.29,170.82$; ESIMS $m / z 316\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 77.79 ; H, 6.53; N, 4.77. Found: C, 77.98; H, 6.81; N, 4.49.

Compound 5f: 70%; white solid, mp $134-135{ }^{\circ} \mathrm{C}$; IR (KBr) $3209,1666,1449 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.87-2.97(\mathrm{~m}$, $1 \mathrm{H}), 3.09-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.74(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.57(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.80,22.65,35.00$, $40.70,90.28,126.43,128.45,128.55$ (2C), 128.71, 128.90, 129.07, 132.32, 139.38, 152.45, 170.37; ESIMS m/z 330 $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $78.15 ; \mathrm{H}, 6.89$; N, 4.56. Found: C, 78.43; H, 6.92; N, 4.53.

Compound 5g: 77%; white solid, mp $120-121{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3407,1665,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.21-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.82-$ $1.85(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.39(\mathrm{tt}, J=12.0$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 3 \mathrm{H})$, $7.55-7.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.67,22.63$, 25.21, 26.42 (2C), 30.36, 30.77, 52.01, 90.92, 128.43, 128.54, 128.57, 130.34, 132.59, 150.95, 169.36; ESIMS m/z $308\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 75.76$; H , 8.12; N, 4.91. Found: C, 75.92; H, 7.94; N, 4.67.

Compound 5h: 79%; white solid, mp $166-168{ }^{\circ} \mathrm{C}$; IR (KBr) 3396, 1668, 1438, $1405 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.41(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.13,42.68,91.81,116.89,125.85$, $126.82,126.97,128.21,128.38,128.52$ (2C), 128.61, $128.65,129.65,136.31,136.46,137.96,138.44,150.24$, 170.49; ESIMS $m / z 404\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 81.86; H, 6.08; N, 3.67. Found: C, 81.83; H, 6.36; N, 3.59.

Synthesis of 7. A solution of $\mathbf{4 a}(140 \mathrm{mg}, 0.5 \mathrm{mmol})$ and ammonia (28% aqueous solution, $560 \mathrm{mg}, 9.2 \mathrm{mmol}$) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was stirred at room temperature for 24 h . After the usual aqueous extractive workup and column chromatographic purification process (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$, $5: 1: 1$), compound 7 was obtained as a pale yellow solid (107 $\mathrm{mg}, 81 \%)$ along with $\mathbf{5 i}(6 \mathrm{mg}, 5 \%)$ as a white solid. The spectroscopic data of $\mathbf{7}$ and $\mathbf{5 i ^ { 1 1 }}$ are as follows.

Compound 7: 81%; pale yellow solid, mp 160-161 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3391,3308,1733,1656,1335 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 8 \mathrm{H})$, 7.40-7.44 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\delta 10.12$, $98.99,125.35,126.11,128.25,128.39,128.57,128.81,129.28$, $131.25,137.69,160.12,173.03$; ESIMS $m / z 288\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 76.96; H, 5.70; N, 5.28. Found: C, 77.13; H, 5.86; N, 5.01.

Compound 5i: ${ }^{11} 5 \%$; white solid, mp $178-180{ }^{\circ} \mathrm{C}$; IR (KBr) 3327, 3197, 1682, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $d_{6}, 300 \mathrm{MHz}$) $\delta 1.97$ (s, 3H), 5.74 (br s, 1H), 7.03 (br $\mathrm{s}, 1 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right) \delta 9.53,89.29,125.73,127.86$, $127.88,128.06,128.10,128.29,128.59,132.08,139.50$, 155.48, 173.28; ESIMS $m / z 288\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.

Synthesis of 8. A solution of $7(80 \mathrm{mg}, 0.3 \mathrm{mmol})$, benzyl bromide ($103 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was heated to reflux for 2 h . After the usual aqueous extractive workup and column chromatographic purification process (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 9: 8: 1$), compound $\mathbf{8}$ was obtained as a white solid ($64 \mathrm{mg}, 60 \%$) along with $\mathbf{5 i}(9 \mathrm{mg}, 11 \%)$ and $\mathbf{5 a}(3 \mathrm{mg}, \mathbf{3 \%})$. The spectroscopic data of $\mathbf{8}$ are as follows.

Compound 8: 60%; white solid, mp $156-157{ }^{\circ} \mathrm{C}$; IR (KBr) 3183, 1709, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.18$ (s, 3H), 4.42 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 13 \mathrm{H}), 7.51-7.54$ (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.24,64.30,92.96$, $125.88,127.48,127.58,128.37$ (2C), 128.46, 128.48, 128.51, $128.95,131.12,131.74,137.76,138.89,152.03,172.86$; ESIMS $m / z 378\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 81.10; H, 5.96; N, 3.94. Found: C, 81.19; H, 6.25; N, 3.69.

Synthesis of 9. A solution of $\mathbf{5 a}(107 \mathrm{mg}, 0.3 \mathrm{mmol})$, $\mathrm{MeOH}(290 \mathrm{mg}, 9.0 \mathrm{mmol})$, and $p-\mathrm{TsOH}(6 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in toluene $(1.0 \mathrm{~mL})$ was heated to reflux for 20 min . After the usual aqueous extractive workup and column chromatographic purification process (hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1: 1$), compound 9 was obtained as a white solid ($94 \mathrm{mg}, 85 \%$). The spectroscopic data of $\mathbf{9}$ are as follows.

Compound 9: 85%; white solid, mp $114-116{ }^{\circ} \mathrm{C}$; IR (KBr) 1692, 1441, 1395, $1350 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 13 \mathrm{H}), 7.37-7.40(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 10.57, 43.07, 49.76, $96.99,126.41,126.93,127.92,128.20,128.25$ (2C), 128.30, $128.59,129.33,131.83,131.86,137.48$ (2C), 149.32, 171.24; ESIMS $m / z 392\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 81.27; H, 6.27; N, 3.79. Found: C, 81.02; H, 6.59; N, 3.76.

Synthesis of 10 . A solution of $5 \mathbf{c}(112 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{COOH}(1.0 \mathrm{~mL})$ was heated to reflux for 20 min . After the usual aqueous extractive workup and column chromatographic purification process (hexanes $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1: 1$), compound 10 was obtained as a white solid ($89 \mathrm{mg}, 84 \%$). Compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ were synthesized from $\mathbf{5 f}$ similarly, and the spectroscopic data of 10-12 are as follows.

Compound 10: 84%; white solid, mp 204-207 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1692, $1447,1413 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.16(\mathrm{~m}, 2 \mathrm{H}), 4.25-$ $4.31(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.73(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.09-$ 7.13 (m, 2H), 7.18-7.34 (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 10.07,29.10,34.96,71.73,125.10,127.36,127.85$, 128.14, 128.27, 128.30, 128.41, 128.49, 128.85, 129.75, $131.32,134.63,134.81,135.05,139.45,156.09,170.75$;

ESIMS m/z $374\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}$: C , 85.44; H, 6.02; N, 3.99. Found: C, 85.27; H, 6.33; N, 3.65.

Compound 11: 81%; white solid, mp $129-130{ }^{\circ} \mathrm{C}$; IR (KBr) 1692, 1441, 1395, $1350 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.92(\mathrm{~m}, 2 \mathrm{H})$, $4.68(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.34$ $(\mathrm{m}, 7 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $9.38,34.96,41.09,94.34,126.49,128.39,128.41,128.52$, 128.81, 129.37, 129.65, 131.80, 138.69, 142.71, 145.32, 169.98; ESIMS $m / z 312\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}$: C, 83.01; H, 6.62; N, 4.84. Found: C, 83.29; H, 6.82; N, 4.85 .

Compound 12: 83%; white solid, mp $118-120{ }^{\circ} \mathrm{C}$; IR (KBr) $1678,1442,1377 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dd}, J=15.9$ and 3.0 Hz , 1 H), 3.06 (ddd, $J=15.9,12.3$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (td, $J=$ 12.3 and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.58(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.88-6.93 (m, 1H), 7.09-7.14 (m, 4H), 7.42-7.46 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.44,27.15,30.37,35.54$, $66.29,125.50,126.64,127.56,128.19,128.42,129.08$, 129.51, 130.78, 133.48, 134.56, 137.27, 157.94, 171.18; ESIMS $m / z 312\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}$: C, 83.01; H, 6.62; N, 4.84. Found: C, 83.37; H, 6.96; N, 4.78.

Acknowledgments. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2011-0002570). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. Kim, K. H.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 1012-1020.
2. For the general review on Morita-Baylis-Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. (c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574. (d) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. (e) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley \& Sons: New York, 1997; Vol. 51, pp 201-350. (f) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. (g) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (h) Radha Krishna, P.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897-2912. (i) Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780.
3. For the biologically important 5-hydroxy-3-pyrrolin-2-one moietycontaining compounds, see: (a) Snider, B. B.; Neubert, B. J. J. Org. Chem. 2004, 69, 8952-8955 and further references cited therein. (b) Agatsuma, T.; Akama, T.; Nara, S.; Matsumiya, S.; Nakai, R.; Ogawa, H.; Otaki, S.; Lkeda, S.-I.; Saitoh, Y.; Kanda, Y. Org. Lett. 2002, 4, 4387-4390. (c) Kakeya, H.; Onozawa, C.; Sato, M.; Arai, K.; Osada, H. J. Med. Chem. 1997, 40, 391-394. (d) Singh, S. B.; Goetz, M. A.; Jones, E. T.; Bills, G. F.; Giacobbe,
R. A.; Herranz, L.; Stevens-Miles, S.; Williams, D. L. J. Org Chem. 1995, 60, 7040-7042. (e) Clark, A. J.; Dell, C. P.; McDonagh, J. M.; Geden, J.; Mawdsley, P. Org. Lett. 2003, 5, 2063-2066 and further references cited therein. (f) Sortino, M.; Garibotto, F.; Filho, V. C.; Gupta, M.; Enriz, R.; Zacchino, S. Bioorg. Med. Chem. 2011, 19, 2823-2834.
4. For the synthesis and synthetic applications of various 5-hydroxy-3-pyrrolin-2-ones, see: (a) Ma, S.; Xie, H. J. Org. Chem. 2002, 67, 6575-6578. (b) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918-3921. (c) Basso, A.; Banfi, L.; Galatini, A.; Guanti, G.; Rastrelli, F.; Riva, R. Org. Lett. 2009, 11, 4068-4071. (d) Dias-Jurberg, I.; Gagosz, F.; Zard, S. Z. Org. Lett. 2010, 12, 416-419. (e) Adib, M.; Mahdavi, M.; Noghani, M. A.; Bijanzadeh, H. R. Tetrahedron Lett. 2007, 48, 8056-8059. (f) Adhikari, R.; Jones, D. A.; Liepa, A. J.; Nearn, R. H. Aust. J. Chem. 2005, 58, 882-890. (g) Coleman, R. S.; Walczak, M. C.; Campbell, E. L. J. Am. Chem. Soc. 2005, 127, 16038-16039. (h) Jiang, L.-J.; Lan, H.-Q.; Zheng, J.-F.; Ye, J.-L.; Huang, P.-Q. Synlett 2009, 297-301. (i) Ma, S.; Xie H. Org. Lett. 2000, 2, 38013803.
5. For the synthesis of 5-hydroxy-3-pyrrolin-2-one derivatives from γ-keto esters or related compounds, see: (a) Kraus, G. A.; Thomas, P. J.; Bougie, D.; Chen, L. J. Org. Chem. 1990, 55, 1624-1627. (b) Bouillon, J.-P.; Tinant, B.; Nuzillard, J.-M.; Portella, C. Synthesis 2004, 711-721. (c) Harigaya, Y.; Suzuki, T.; Onda, M. Chem. Pharm. Bull. 1979, 27, 2636-2641. (d) Broussy, S.; BernardesGenisson, V.; Gornitzka, H.; Bernadou, J.; Meunier, B. Org. Biomol. Chem. 2005, 3, 666-669.
6. Kim, J. M.; Lee, S.; Kim, S. H.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 2215-2220.
7. Lim, J. W.; Kim, K. H.; Park, B. R.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6545-6549.
8. For the synthesis and biological actives of 5-aminolactone derivatives, see: (a) Yamashita, T.; Yamashita, M.; Aoyagi, S. Tetrahedron Lett. 2011, 52, 4266-4268. (b) Yamashita, M.; Yamashita, T.; Aoyagi, S. Org. Lett. 2011, 13, 2204-2207. (c) Wittine, K.; Babic, M. S.; Kosutic, M.; Cetina, M.; Rissanen, K.; Pavelic, S. K.; Paravic, A. T.; Sedic, M.; Pavelic, K.; Mintas, M. Eur. J. Med. Chem. 2011, 46, 2770-2785. (d) Li, Y.-H.; Zhou, Y.; Suolang, G.; Bianba, C.; Ding, L.-S.; Feng, H. Helv. Chima. Acta 2011, 94, 474-480. (e) Blazecka, P. G.; Belmont, D.; Curran, T.; Pflum, D.; Zhang, J. Org. Lett. 2003, 5, 5015-5017.
9. For the synthesis of 5-alkoxylactam derivatives, see: (a) Pattarozzi, M.; Roncaglia, F.; Accorsi, L.; Parsons, A. F.; Ghelfi, F. Tetrahedron 2010, 66, 1357-1364. (b) Kumar, N.; Iskander, G. PCT Int. Appl. 2007, WO 2007/085042 (Chem. Abstr. 2007, 147: 235006).
10. For the related N-acyliminium ion cyclizations leading to isoquinolines and related compounds, see: (a) Kaluza, Z.; Mostowicz, D.; Dolega, G.; Wojcik, R. Tetrahedron 2008, 64, 2321-2328. (b) Kaluza, Z.; Mostowicz, D.; Dolega, G.; Mroczko, K.; Wojcik, R. Tetrahedron 2006, 62, 943-953. (c) Zhang, F.; Simpkins, N. S.; Wilson, C. Tetrahedron Lett. 2007, 48, 5942-5947. (d) Collado, M. I.; Manteca, I.; Sotomayor, N.; Villa, M.-J.; Lete, E. J. Org. Chem. 1997, 62, 2080-2092. (e) Pin, F.; Comesse, S.; Garrigues, B.; Marchalin, S.; Daich, A. J. Org. Chem. 2007, 72, 1181-1191. (f) Hitchings, G. J.; Vernon, J. M. J. Chem. Soc., Perkin Trans. 1 1990, 1757-1763. (g) Bahajaj, A. A.; Vernon, J. M.; Wilson, G. D. J. Chem. Soc., Perkin Trans. 1 2001, 1446-1451.
11. Alcaide, B.; Rodriguez-Lopez, J. J. Chem. Soc., Perkin Trans. 1 1990, 2451-2457.
