References
- Li, N.N. US Patent 3410794, 1968.
- Kumbasar, R. A.; Sahin, I. J. Membr. Sci. 2008, 164, 712.
- Chakraborty, M.; Bhattacharya, C.; Datta, S. Colloids Surf. A 2003, 224, 65. https://doi.org/10.1016/S0927-7757(03)00260-7
- Ortiz, M. F.; San Roman, S. M.; Corvalan, A.; Eliceche, M. Ind. Eng. Chem. Res. 2003, 42, 5891. https://doi.org/10.1021/ie030212f
- Correia, P. F.; de Carvalho, J. M. R. J. Membr. Sci. 2003, 225, 41. https://doi.org/10.1016/S0376-7388(03)00319-3
- Park, Y.; Skelland, A. H. P.; Forney, L. J.; Kim, J. H. Water Res. 2006, 40, 1763. https://doi.org/10.1016/j.watres.2006.03.005
- Frankenfeld, J. W.; Chan, R. P.; Li, N. N. Sep. Sci. Technol. 1981, 16, 385. https://doi.org/10.1080/01496398108068528
- Hou, W.; Papadopoulos, K. D. Chem. Eng. Sci. 1996, 51, 5043. https://doi.org/10.1016/0009-2509(96)00311-9
- Zihao, W.; Yuanli, J.; Jufu, F. J. Membr. Sci. 1996, 109, 25. https://doi.org/10.1016/0376-7388(95)00156-5
- Bandyopadhyaya, R.; Bhowal, A.; Datta, S.; Sanyal, S. K. Chem. Eng. Sci. 1998, 53, 2799. https://doi.org/10.1016/S0009-2509(98)00110-9
- Xuan-cai, D.; Fu-quan, X. J. Membr. Sci. 1991, 59, 183. https://doi.org/10.1016/S0376-7388(00)81182-5
- Li, N. N.; Borwankar, R. P.; Chan, C. C.; Wassan, D. T.; Kurzeja, R. M.; Gu, Z. M. AIChE J. 1988, 34, 753. https://doi.org/10.1002/aic.690340506
- Florence, A. T.; Whitehill, D. J. Colloid Interface Sci. 1981, 79, 243. https://doi.org/10.1016/0021-9797(81)90066-7
- Wan, Y.; Zhang, X. J. Membr. Sci. 2002, 196, 185. https://doi.org/10.1016/S0376-7388(01)00554-3
- Ikeda, H.; Matsuhisa, A.; Ueno, A. Chem. Eur. J. 2003, 9, 4907. https://doi.org/10.1002/chem.200304816
- Yordanov, B.; Boyadzhiev, L. J. Membr. Sci. 2007, 305, 313. https://doi.org/10.1016/j.memsci.2007.08.016
- Demirci, J. C.; Cotton, A. L.; Lometto, K. R.; Harkins, P. N.; Hinz, N. Biotechnol. Bioeng. 2003, 83, 749. https://doi.org/10.1002/bit.10722
- Kaghazchia, T.; Kargaria, A.; Yegania, R.; Zare, A. Desalination 2006, 190, 161. https://doi.org/10.1016/j.desal.2005.06.031
- Mohagheghi, E.; Alemzadeh, I.; Vossoughi, M. Sep. Sci. Technol. 2008, 43, 3075. https://doi.org/10.1080/01496390802219612
- Oshima, T.; Inoue, K.; Furusaki, S.; Goto, M. J. Membr. Sci. 2003, 217, 87. https://doi.org/10.1016/S0376-7388(03)00078-4
- Bayraktar, E. Process Biochem. 2001, 37, 169. https://doi.org/10.1016/S0032-9592(01)00192-3
- Vasudevan, M.; Wiencek, J. M. Ind. Eng. Chem. Res. 1996, 35, 1085. https://doi.org/10.1021/ie950328e
- Habaki, H.; Egashira, R.; Stevens, G. W.; Kawasaki, J. J. Membr. Sci. 2002, 208, 89. https://doi.org/10.1016/S0376-7388(02)00179-5
- Lee, S.C. J. Ind. Eng. Chem. 2008, 14, 207. https://doi.org/10.1016/j.jiec.2007.09.005
- Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3081. https://doi.org/10.1080/00958972.2011.613462
- Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 4029. https://doi.org/10.1080/00958972.2011.635790
- Mokhtari, B.; Pourabdollah, K.; Dalali, N. Chromatographia 2011, 73, 829. https://doi.org/10.1007/s10337-011-1954-1
- Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. DOI:10.1007/s10847-011-0099-z
- Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Incl. Phenom. Macrocycl. Chem. 2011, 69(1-2), 1. https://doi.org/10.1007/s10847-010-9848-7
- Baeyer, A. Chem. Ber. 1872, 5, 280. https://doi.org/10.1002/cber.18720050186
- Zinke, A.; Ziegler, E. Chem. Ber. 1944, 77, 264. https://doi.org/10.1002/cber.19440770322
- Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905. https://doi.org/10.1021/jo00419a052
- Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2011, 32, 3855. https://doi.org/10.5012/bkcs.2011.32.11.3855
- Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2012, 23, 696.
- Mokhtari, B.; Pourabdollah, K. J. Therm. Anal. Calorim. 2012. DOI:10.1007/s10973-011-2014-7
- Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 4079. https://doi.org/10.1080/00958972.2011.636040
- Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. DOI:10.1007/s10847-011-0052-1
- Mokhtari, B.; Pourabdollah, K. Bull. Korean Chem. Soc. 2011, 32, 3979. https://doi.org/10.5012/bkcs.2011.32.11.3979
- Mokhtari, B.; Pourabdollah, K.; Dallali, N. J. Radioanal. Nucl. Chem. 2011, 287, 921. https://doi.org/10.1007/s10967-010-0881-1
- Mokhtari, B.; Pourabdollah, K. Asian J. Chem. 2011, 23, 4717.
- Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3189. https://doi.org/10.1080/00958972.2011.616930
- Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2012. DOI:10.1007s10847-011-0062-z https://doi.org/10.1007s10847-011-0062-z
- Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Coord. Chem. 2011, 64, 743. https://doi.org/10.1080/00958972.2011.555538
- Mokhtari, B.; Pourabdollah, K. J. Electrochemical Soc. 2012. DOI:10.1149/2.048203jes
- Mokhtari, B.; Pourabdollah, K. Electroanalysis 2012. DOI:1002/elan.201100584 https://doi.org/10.1002/elan.201100584
- Mokhtari, B.; Pourabdollah, K. Desalination 2012, 292, 1. https://doi.org/10.1016/j.desal.2012.02.004
- Mokhtari, B.; Pourabdollah, K. J. Chilean Chem. Soc. 2012, 58, 827.
- Mokhtari, B.; Pourabdollah, K. Drug Chem. Toxicol. 2012. DOI:10.3109/01480545.2011.653490
- Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2012. DOI:10.1080/10610278.2012.655278
- Mokhtari, B.; Pourabdollah, K. J. Sci. Food Agric. 2012. DOI:10.1002/jsfa.5688
- Reis, M. T. A.; Membr, J. M. R. J. Science 1993, 84, 201.
- Othman, N.; Mat, H.; Goto, M. J. Membr. Sci. 2006, 282, 171. https://doi.org/10.1016/j.memsci.2006.05.020
- Bhowal, A.; Datta, S. J. Membr. Sci. 2001, 188, 1. https://doi.org/10.1016/S0376-7388(00)00586-X
- Venkateswaran, P.; Palanivelu, K. Hydrometallurgy 2005, 78, 107. https://doi.org/10.1016/j.hydromet.2004.10.021
- Strzelbck, J.; Charewcz, W. A.; Mackewcz, A. Sep. Sci. Technol. 1984, 19, 321. https://doi.org/10.1080/01496398408068586
- Thien, M. P.; Hatton, T. A.; Wang, D. I. C. Biotechnol. Bioeng. 1990, 35, 853. https://doi.org/10.1002/bit.260350902
Cited by
- Application of nano-baskets in preconcentration of tetrahedral oxoanions in the produced water of oil wells vol.24, pp.12, 2012, https://doi.org/10.1080/10610278.2012.732225
- Metabolic Fingerprints by Nano-baskets of 1,2-Alternate Calixarene and Emulsion Liquid Membranes vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2320
- Electrochemical Study of Structural Effects in Complexation of Nano-baskets: Calix[4]-1,2-crown-3, -crown-4, -crown-5, -crown-6 vol.42, pp.8, 2012, https://doi.org/10.1080/15533174.2012.680131
- Nano-baskets in Emulsion Liquid Membranes for Selective Extraction of Alkali Metals vol.59, pp.9, 2012, https://doi.org/10.1002/jccs.201100737
- Application of nano-baskets in metabolomics vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0233-6
- Separation of Alkali Metals by Emulsion Liquid Membranes Facilitated by Nano-Baskets of Calixarene pp.1520-5754, 2013, https://doi.org/10.1080/01496395.2013.794466
- RETRACTED ARTICLE: Inclusion of piperidine-modified nano-baskets towards rare earth metals vol.78, pp.1-4, 2014, https://doi.org/10.1007/s10847-013-0312-3
- RETRACTED ARTICLE: Application of nano-baskets in polymer inclusion membranes vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0320-3
- Voltammetric Study of Nano-baskets of Calix[4]-1,3-crowns-5, -crowns-6 Complexes vol.76, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.05.028
- Electrochemical investigation of nano-baskets of calix[4]-1,3-crowns-5,6 complexes vol.76, pp.3, 2012, https://doi.org/10.1007/s10847-012-0210-0
- Inclusion extraction of alkali metals by emulsion liquid membranes bearing nano-baskets vol.76, pp.3, 2012, https://doi.org/10.1007/s10847-012-0212-y