DOI QR코드

DOI QR Code

Binding Model of Amentoflavone to Peroxisome Proliferator-Activated Receptor γ

  • Lee, Jee-Young (Drug Discovery Team, Bioinformatics & Molecular Design Research Center) ;
  • Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, So-Jung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Eun-Jung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Shin, So-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jin, Qinglong (College of Pharmacy, Chosun University) ;
  • Yoon, Do-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Woo, Eun-Rhan (College of Pharmacy, Chosun University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2012.02.28
  • Accepted : 2012.03.20
  • Published : 2012.05.20

Abstract

Human peroxisome proliferator-activated receptor gamma ($hPPAR{\gamma}$) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. In this study, we verified that amentoflavone is an agonist of $hPPAR{\gamma}$ and probed the molecular basis of its action. It was demonstrated that amentoflavone bound $hPPAR{\gamma}$ with high (picomolar) affinity and increased the binding between $hPPAR{\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 4-fold. Based on a docking study, for the first time, we propose a model of amentoflavone and $hPPAR{\gamma}$ binding in which amentoflavone forms three hydrogen bonds with the side chains of His323, Tyr327, and Arg280 in $hPPAR{\gamma}$ and participates in two hydrophobic interactions.

Keywords

References

  1. McKenna, N. J.; O'Malley, B. W. Endocrinology 2002, 143, 2461- 2465. https://doi.org/10.1210/en.143.7.2461
  2. Hansen, M. K.; Connolly, T. M. Curr. Opin. Investig. Drugs 2008, 9, 247-255.
  3. Berger, J. P.; Akiyama, T. E.; Meinke, P. T. Trends Pharmacol. Sci. 2005, 26, 244-251. https://doi.org/10.1016/j.tips.2005.03.003
  4. Kersten, S.; Desvergne, B.; Wahli, W. Nature 2000, 405, 421-424. https://doi.org/10.1038/35013000
  5. Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 53, 409-435. https://doi.org/10.1146/annurev.med.53.082901.104018
  6. Chinetti-Gbaguidi, G.; Fruchart, J. C.; Staels, B. Curr. Opin. Pharmacol. 2005, 5, 177-183. https://doi.org/10.1016/j.coph.2004.11.004
  7. Chinetti, G.; Lestavel, S.; Bocher, V.; Remaley, A. T.; Neve, B.; Torra, I. P.; Teissier, E.; Minnich, A.; Jaye, M.; Duverger, N.; Brewer, H. B.; Fruchart, J. C.; Clavey, V.; Staels, B. Nat. Med. 2001, 7, 53-58. https://doi.org/10.1038/83348
  8. Lee, C. H.; Olson, P.; Evans, R. M. Endocrinology 2003, 144, 2201-2207. https://doi.org/10.1210/en.2003-0288
  9. Bocher, V.; Pineda-Torra, I.; Fruchart, J. C.; Staels, B. Ann. N. Y. Acad. Sci. 2002, 967, 7-18.
  10. Rosen, E. D.; Spiegelman, B. M. J. Biol. Chem. 2001, 276, 37731- 37734. https://doi.org/10.1074/jbc.R100034200
  11. Lehrke, M.; Lazar, M. A. Cell 2005, 123, 993-999. https://doi.org/10.1016/j.cell.2005.11.026
  12. Tontonoz, P.; Spiegelman, B. M. Annu. Rev. Biochem. 2008, 77, 289-312. https://doi.org/10.1146/annurev.biochem.77.061307.091829
  13. Nolte, R. T.; Wisely, G. B.; Westin, S.; Cobb, J. E.; Lambert, M. H.; Kurokawa, R.; Rosenfeld, M. G.; Willson, T. M.; Glass, C. K.; Milburn, M. V. Nature 1998, 395, 137-143. https://doi.org/10.1038/25931
  14. Oberfield, J. L.; Collins, J. L.; Holmes, C. P.; Goreham, D. M.; Cooper, J. P.; Cobb, J. E.; Lenhard, J. M.; Hull-Ryde, E. A.; Mohr, C. P.; Blanchard, S. G.; Parks, D. J.; Moore, L. B.; Lehmann, J. M.; Plunket, K.; Miller, A. B.; Milburn, M. V.; Kliewer, S. A.; Willson, T. M. Proc. Natl. Acad. Sci. USA 1999, 96, 6102-6106. https://doi.org/10.1073/pnas.96.11.6102
  15. Uppenberg, J.; Svensson, C.; Jaki, M.; Bertilsson, G.; Jendeberg, L.; Berkenstam, A. J. Biol. Chem. 1998, 273, 31108-311012. https://doi.org/10.1074/jbc.273.47.31108
  16. Gampe, R. T., Jr.; Montana, V. G.; Lambert, M. H.; Miller, A. B.; Bledsoe, R. K.; Milburn, M. V.; Kliewer, S. A.; Willson, T. M.; Xu, H. E. Mol. Cell 2000, 5, 545-555. https://doi.org/10.1016/S1097-2765(00)80448-7
  17. Xu, H. E.; Lambert, M. H.; Montana, V. G.; Plunket, K. D.; Moore, L. B.; Collins, J. L.; Oplinger, J. A.; Kliewer, S. A.; Gampe, R. T., Jr.; McKee, D. D.; Moore, J. T.; Willson, T. M. Proc. Natl. Acad. Sci. USA 2001, 98, 13919-13924. https://doi.org/10.1073/pnas.241410198
  18. Koyama, H.; Miller, D. J.; Boueres, J. K.; Desai, R. C.; Jones, A. B.; Berger, J. P.; MacNaul, K. L.; Kelly, L. J.; Doebber, T. W.; Wu, M. S.; Zhou, G.; Wang, P. R.; Ippolito, M. C.; Chao, Y. S.; Agrawal, A. K.; Franklin, R.; Heck, J. V.; Wright, S. D.; Moller, D. E.; Sahoo, S. P. J. Med. Chem. 2004, 47, 3255-3263. https://doi.org/10.1021/jm030621d
  19. Henke, B. R. J. Med. Chem. 2004, 47, 4118-4127. https://doi.org/10.1021/jm030631e
  20. Matin, A.; Gavande, N.; Kim, M. S.; Yang, N. X.; Salam, N. K.; Hanrahan, J. R.; Roubin, R. H.; Hibbs, D. E. J. Med. Chem. 2009, 52, 6835-6850. https://doi.org/10.1021/jm900964r
  21. Houseknecht, K. L.; Cole, B. M.; Steele, P. J. Domest. Anim. Endocrinol. 2002, 22, 1-23. https://doi.org/10.1016/S0739-7240(01)00117-5
  22. Lehmann, J. M.; Lenhard, J. M.; Oliver, B. B.; Ringold, G. M.; Kliewer, S. A. J. Biol. Chem. 1997, 272, 3406-3410. https://doi.org/10.1074/jbc.272.6.3406
  23. Hawcroft, G.; D'Amico, M.; Albanese, C.; Markham, A. F.; Pestell, R. G.; Hull, M. A. Carcinogenesis 2002, 23, 107-114. https://doi.org/10.1093/carcin/23.1.107
  24. Cazarolli, L. H.; Zanatta, L.; Alberton, E. H.; Figueiredo, M. S.; Folador, P.; Damazio, R. G.; Pizzolatti, M. G.; Silva, F. R. Mini Rev. Med. Chem. 2008, 8, 1429-1440. https://doi.org/10.2174/138955708786369564
  25. Rajnaryana, K.; Sripalreddy, M.; Chalavadi, M. R.; Krishna, D. R. Indian J. Pharmacol. 2001, 33, 2-16.
  26. Crozier, A.; Jaganath, I. B.; Clifford, M. N. Nat. Prod. Rep. 2009, 26, 1001-1043. https://doi.org/10.1039/b802662a
  27. Butt, M. S.; Sultan, M. T. Crit. Rev. Food Sci. Nutr. 2009, 49, 463- 473. https://doi.org/10.1080/10408390802145310
  28. Manas, E. S.; Xu, Z. B.; Unwalla, R. J.; Somers, W. S. Structure 2004, 12, 2197-2207. https://doi.org/10.1016/j.str.2004.09.015
  29. Lee, J. Y.; Kim, J. K.; Cho, M. C.; Shin, S.; Yoon, D. Y.; Heo, Y. S.; Kim, Y. J. Nat. Prod. 2010, 73, 1261-1265. https://doi.org/10.1021/np100148m
  30. Lee, J. Y.; Jung, K. W.; Woo, E. R.; Kim, Y. Bull. Korean Chem. Soc. 2008, 29, 1479-1484. https://doi.org/10.5012/bkcs.2008.29.8.1479
  31. Cheon, B. S.; Kim, Y. H.; Son, K. S.; Chang, H. W.; Kang, S. S.; Kim, H. P. Planta. Med. 2000, 66, 596-600. https://doi.org/10.1055/s-2000-8621
  32. Jiang, R. W.; Ye, W. C.; Woo, K. Y.; Mak, T. C. W. J. Mol. Struct. 2002, 642, 77-84. https://doi.org/10.1016/S0022-2860(02)00390-3
  33. Denning, G. M.; Stoll, L. L. Pediatr. Pulmonol. 2006, 41, 23-34. https://doi.org/10.1002/ppul.20338
  34. Korkina, L. G.; De Luca, C.; Kostyuk, V. A.; Pastore, S. Curr. Med. Chem. 2009, 16, 3943-3965. https://doi.org/10.2174/092986709789352312
  35. Markham, K. R.; Sheppard, C.; Geiger, H. Phytochemistry 1987, 26, 3335-3337. https://doi.org/10.1016/S0031-9422(00)82499-1
  36. Silva, G. L.; Chai, H.; Gupta, M. P.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Beecher, C. W.; Kinghorn, A. D. Phytochemistry 1995, 40, 129-134. https://doi.org/10.1016/0031-9422(95)00212-P
  37. Lee, H. S.; Cho, M. C.; Paek, T. W.; Choe, Y. K.; Kim, J. W.; Hong, J. T.; Myung, P. K.; Paik, S. G.; Yoon, D. Y. J. Immunol. Methods 2005, 296, 125-134. https://doi.org/10.1016/j.jim.2004.11.011
  38. Tang, J.; Luan, F.; Chen, X. Bioorg. Med. Chem. 2006, 14, 3210- 3217. https://doi.org/10.1016/j.bmc.2005.12.034
  39. Wu, G.; Robertson, D. H.; Brooks, C. L., III; Vieth, M. A. J. Comput. Chem. 2003, 24, 1549-1562. https://doi.org/10.1002/jcc.10306
  40. Vieth, M.; Hirst, J. D.; Kolinski, A.; Brooks, C. L. J. Comput. Chem. 1998, 19, 1612-1622. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1612::AID-JCC7>3.0.CO;2-M
  41. Vieth, M.; Hirst, J. D.; Dominy, B. N.; Daigler, H.; Brooks, C. L. J. Comput. Chem. 1998, 19, 1623-1631. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1623::AID-JCC8>3.0.CO;2-L
  42. Waku, T.; Shiraki, T.; Oyama, T.; Maebara, K.; Nakamori, R.; Morikawa, K. EMBO J. 2010, 29, 3395-3407. https://doi.org/10.1038/emboj.2010.197

Cited by

  1. Thiazolidinedione-induced lipid droplet formation during osteogenic differentiation vol.223, pp.2, 2014, https://doi.org/10.1530/JOE-14-0425