참고문헌
- Abramowitz, M. and Stegun, I.A. (1972), Handbook of mathematical functions with formulas, graphs and mathematical tables, 9th printing, Dover, New York.
- Aki, K. and Richards, P.G. (2002), Quantitative seismology, Second Edition, University Science Books, California.
- Ampuero, J.P. (2002), Etude physique et numerique de la nucleation des seismes, PhD Thesis, Universite Paris 7, Paris, France.
- Becache, E., Fauqueux, S. and Joly, P. (2003), "Stability of perfectly matched layers, group velocities and anisotropic waves", J. Comput. Phys., 188(2), 399-433. https://doi.org/10.1016/S0021-9991(03)00184-0
- Ben-Menahem, A. and Singh, S.J. (1998), Seismic waves and sources, Dover Publications, New York.
- Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., 114(2), 185-200. https://doi.org/10.1006/jcph.1994.1159
- Bielak, J., Graves, R.W., Olsen, K.B., Taborda, R., Ramirez-Guzman, L., Day, S.M., Ely, G.P., Roten, D., Jordan, T.H., Maechling, P.J., Urbanic, J., Cui, Y.F. and Juve, G. (2010), "The shakeOut earthquake scenario: Verification of three simulation sets", Geophys. J. Int., 180(1), 375-404. https://doi.org/10.1111/j.1365-246X.2009.04417.x
- Brand, L. (1947), Vector and tensor analysis, Wiley.
- Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988), Spectral methods in fluid dynamics, Springer- Verlag, New York.
- Chaljub, E. (2000), "Modelisation numerique de la propagation d'ondes sismiques en geometrie spherique: application a la sismologie globale", PhD Thesis, Universite Paris VII Denis Diderot, Paris, France.
- Chaljub, E., Capdeville, Y. and Vilotte, J.P. (2003), "Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids", J. Comput. Phys., 15(6), 363-369.
- Chaljub, E., Komatitsch, D., Capdeville, Y., Vilotte, J.P., Valette, B. and Festa, G. (2007), "Spectral-element analysis in seismology", Adv. Geophys., 48, 365-419. https://doi.org/10.1016/S0065-2687(06)48007-9
- Courant, R., Friedrichs, K. and Lewy, H. (1928), "Uber die partiellen differenzengleichungen der mathematischen physik", Math. Ann., 100(1), 32-74. https://doi.org/10.1007/BF01448839
- Deville, M.O., Fischer, P.F. and Mund, E.H. (2002), High-order methods for incompressible fluid flow, Cambridge University Press, Cambridge.
- Drew, T.B. (1961), Handbook of vector and polyadic analysis, Reinhold Publishing Co., New York.
- Faccioli, E., Maggio, F., Paolucci, R. and Quarteroni, A. (1997), "2D and 3D elastic wave propagation by a pseudospectral domain decomposition method", J. Seismol., 1(3), 237-251. https://doi.org/10.1023/A:1009758820546
- Festa, G. and Vilotte, J.P. (2005), "The newmark scheme as velocity-stress time staggering: an efficient PML implementation for spectral element simulations of elastodynamics", Geophys. J. Int., 161(3), 798-812.
- Festa, G., Delavaud, E. and Vilotte, J.P. (2005), "Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations", Geophys. Res. Lett., 32(L20306), doi:10.1029/2005GL024091.
- Funaro, D. (1993), FORTRAN routines for spectral methods, Instituto di Analisi Numerica, Pavia, Italy.
- Hildebrand, F.B. (1987), Introduction to numerical analysis, Second Edition, Dover Publications, New York, USA.
- Hughes, T.J.R. (1987), The finite element method, linear static and dynamic finite element analysis, Prentice Hall, Englewood Cliffs, NJ.
- Komatitsch, D. (1997), "Methodes spectrales et elements spectraux pour l'equation de l'elastodynamics 2D et 3D en milieu heterogene", PhD Thesis, Institut de Physique du Globe, Paris, France.
- Komatitsch, D. and Vilotte, J.P. (1998), "The spectral element method", Geophys. J. Int., 154, 146-153.
- Komatitsch, D. and Tromp, J. (1999), "Introduction to the spectral element method for three-dimensional seismic wave propagation", Geophys. J. Int., 139(3), 806-822. https://doi.org/10.1046/j.1365-246x.1999.00967.x
- Komatitsch, D. and Tromp, J. (2001), "Modelling of seismic wave propagation at the scale of the earth on a large Beowulf", Proceedings of the ACM/IEEE Supercomputing SC2001 Conference.
- Komatitsch, D., Tsuboi, S. and Tromp, J. (2005), "The spectral-element method in seismology", Seismic Earth: Array Analysis of Broadband Seismograms, 157, 205-228. https://doi.org/10.1029/157GM13
- Komatitsch, D. and Martin, R. (2007), "An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation", Geophysics, 72(5), 155-167. https://doi.org/10.1190/1.2714334
- Li, Y.F. and Bou Matar, O. (2010), "Convolutional perfectly matched layer for elastic second-order wave equation", J. Acoust. Soc. Am., 127(3), 1318-1327. https://doi.org/10.1121/1.3290999
- Maday, Y. and Patera, A.T. (1989), "Spectral element methods for the incompressible Navier-Stokes equations", State of the art Surveys in Computational Mechanics, ASME, New York, 71-143.
- Malvern, L.E. (1969), Introduction to the mechanics of a continuous medium, Prentice Hall.
- Meyer, C.D. (2000), Matrix analysis and applied linear algebra, SIAM, Philadelphia.
- Meza-Fajardo, K.C. (2007), "Numerical simulation of wave propagation in unbounded elastic domains using the spectral element method", European School for Reduction of Seismic Risk (ROSE School), University of Pavia, Italy.
- Meza-Fajardo, K.C. and Papageorgiou, A.S. (2008), "A non-convolutional split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis", B. Seismol. Soc. Am., 98(4), 1811-1836. https://doi.org/10.1785/0120070223
- Meza-Fajardo, K.C. and Papageorgiou, A.S. (2010), "On the stability of a non-convolutional perfectly matched layer for isotropic elastic media", Soil Dyn. Earthq. Eng., 30(3), 68-81. https://doi.org/10.1016/j.soildyn.2009.09.002
- Modak, S. and Sotelino, E.D. (2002), "The generalized method for structural dynamics applications", Adv. Eng. Softw., 33(7-10), 565-577. https://doi.org/10.1016/S0965-9978(02)00079-0
- Orzag, S.A. (1980), "Spectral element methods for problems in complex geometries", J. Comput. Phys., 37(1), 70-92. https://doi.org/10.1016/0021-9991(80)90005-4
- Padovani, E., Priolo, E. and Seriani, G. (1994), "Low- and high-order finite element method: Experience in seismic modeling", J. Comput. Acoust., 2(4), 371-422. https://doi.org/10.1142/S0218396X94000233
- Patera, A.T. (1984), "A spectral element method for fluid dynamics: laminar flow in a channel expansion", J. Comput. Phys., 54(3), 468-488. https://doi.org/10.1016/0021-9991(84)90128-1
- Priolo, E. and Seriani, G. (1991), "A numerical investigation of Chebyshev spectral element method for acoustic wave propagation", Proceedings of the 13th IMACS Conference on Computational Applied Mathematics, Dublin, Ireland, 2, 551-556.
- Priolo, E., Carcione, J.M. and Seriani, G. (1994), "Numerical simulation of interface waves by high-order spectral modelling techniques", J. Acoust. Soc. Am., 95(2), 681-693. https://doi.org/10.1121/1.408428
- Priolo, E. (1999), "Earthquake ground motion simulation through the 2-D spectral element method", Proceedings of the International Conference on Computational Acoustics, Trieste, Italy.
- Ricker, N. (1945), "The computation of output disturbances from amplifiers for true wavelet inputs", Geophysics, 10(2), 207-220. https://doi.org/10.1190/1.1437162
- Sato, H. and Fehler, M. (1998), Seismic wave propagation and scattering in the heterogeneous earth, AIP Press/ Springer Verlag, New York.
- Schwab, C.H. (1998), Up- and hp-finite element methods, Oxford University Press, Oxford.
- Seriani, G. and Priolo, E. (1994), "Spectral element method for acoustic wave simulation in heterogeneous media", Finite Elem. Anal. Des., 16(3-4), 337-348. https://doi.org/10.1016/0168-874X(94)90076-0
- Seriani, G. and Oliveira, S.P. (2008), "Dispersion analysis of spectral element methods for elastic wave propagation", Wave Motion, 45(6), 729-744. https://doi.org/10.1016/j.wavemoti.2007.11.007
- Simmonds, J.G. (1994), A brief on tensor analysis, Second Edition, Springer-Verlag.
피인용 문헌
- Modeling of SH-waves in a fiber-reinforced anisotropic layer vol.10, pp.1, 2016, https://doi.org/10.12989/eas.2016.10.1.091
- Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method vol.14, pp.12, 2014, https://doi.org/10.3390/s140203477
- Dispersion analysis of multi-modal waves based on the Reassigned Cross-S-Transform vol.143, pp.None, 2021, https://doi.org/10.1016/j.soildyn.2021.106610