DOI QR코드

DOI QR Code

Wave propagation in unbounded elastic domains using the spectral element method: formulation

  • Meza Fajardo, Kristel C. (Departamento de Ingenieria Civil Universidad Nacional Autonoma de Honduras (UNAH)) ;
  • Papageorgiou, Apostolos S. (Department of Civil Engineering, University of Patras)
  • 투고 : 2011.08.04
  • 심사 : 2012.04.10
  • 발행 : 2012.06.25

초록

The objective of the present paper is to review and implement the most recent developments in the Spectral Element Method (SEM), as well as improve aspects of its implementation in the study of wave propagation by numerical simulation in elastic unbounded domains. The classical formulation of the method is reviewed, and the construction of the mass matrix, stiffness matrix and the external force vector is expressed in terms of matrix operations that are familiar to earthquake engineers. To account for the radiation condition at the external boundaries of the domain, a new absorbing boundary condition, based on the Perfectly Matched Layer (PML) is proposed and implemented. The new formulation, referred to as the Multi-Axial Perfectly Matched Layer (M-PML), results from generalizing the classical Perfectly Matched Layer to a medium in which damping profiles are specified in more than one direction.

키워드

참고문헌

  1. Abramowitz, M. and Stegun, I.A. (1972), Handbook of mathematical functions with formulas, graphs and mathematical tables, 9th printing, Dover, New York.
  2. Aki, K. and Richards, P.G. (2002), Quantitative seismology, Second Edition, University Science Books, California.
  3. Ampuero, J.P. (2002), Etude physique et numerique de la nucleation des seismes, PhD Thesis, Universite Paris 7, Paris, France.
  4. Becache, E., Fauqueux, S. and Joly, P. (2003), "Stability of perfectly matched layers, group velocities and anisotropic waves", J. Comput. Phys., 188(2), 399-433. https://doi.org/10.1016/S0021-9991(03)00184-0
  5. Ben-Menahem, A. and Singh, S.J. (1998), Seismic waves and sources, Dover Publications, New York.
  6. Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., 114(2), 185-200. https://doi.org/10.1006/jcph.1994.1159
  7. Bielak, J., Graves, R.W., Olsen, K.B., Taborda, R., Ramirez-Guzman, L., Day, S.M., Ely, G.P., Roten, D., Jordan, T.H., Maechling, P.J., Urbanic, J., Cui, Y.F. and Juve, G. (2010), "The shakeOut earthquake scenario: Verification of three simulation sets", Geophys. J. Int., 180(1), 375-404. https://doi.org/10.1111/j.1365-246X.2009.04417.x
  8. Brand, L. (1947), Vector and tensor analysis, Wiley.
  9. Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988), Spectral methods in fluid dynamics, Springer- Verlag, New York.
  10. Chaljub, E. (2000), "Modelisation numerique de la propagation d'ondes sismiques en geometrie spherique: application a la sismologie globale", PhD Thesis, Universite Paris VII Denis Diderot, Paris, France.
  11. Chaljub, E., Capdeville, Y. and Vilotte, J.P. (2003), "Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids", J. Comput. Phys., 15(6), 363-369.
  12. Chaljub, E., Komatitsch, D., Capdeville, Y., Vilotte, J.P., Valette, B. and Festa, G. (2007), "Spectral-element analysis in seismology", Adv. Geophys., 48, 365-419. https://doi.org/10.1016/S0065-2687(06)48007-9
  13. Courant, R., Friedrichs, K. and Lewy, H. (1928), "Uber die partiellen differenzengleichungen der mathematischen physik", Math. Ann., 100(1), 32-74. https://doi.org/10.1007/BF01448839
  14. Deville, M.O., Fischer, P.F. and Mund, E.H. (2002), High-order methods for incompressible fluid flow, Cambridge University Press, Cambridge.
  15. Drew, T.B. (1961), Handbook of vector and polyadic analysis, Reinhold Publishing Co., New York.
  16. Faccioli, E., Maggio, F., Paolucci, R. and Quarteroni, A. (1997), "2D and 3D elastic wave propagation by a pseudospectral domain decomposition method", J. Seismol., 1(3), 237-251. https://doi.org/10.1023/A:1009758820546
  17. Festa, G. and Vilotte, J.P. (2005), "The newmark scheme as velocity-stress time staggering: an efficient PML implementation for spectral element simulations of elastodynamics", Geophys. J. Int., 161(3), 798-812.
  18. Festa, G., Delavaud, E. and Vilotte, J.P. (2005), "Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations", Geophys. Res. Lett., 32(L20306), doi:10.1029/2005GL024091.
  19. Funaro, D. (1993), FORTRAN routines for spectral methods, Instituto di Analisi Numerica, Pavia, Italy.
  20. Hildebrand, F.B. (1987), Introduction to numerical analysis, Second Edition, Dover Publications, New York, USA.
  21. Hughes, T.J.R. (1987), The finite element method, linear static and dynamic finite element analysis, Prentice Hall, Englewood Cliffs, NJ.
  22. Komatitsch, D. (1997), "Methodes spectrales et elements spectraux pour l'equation de l'elastodynamics 2D et 3D en milieu heterogene", PhD Thesis, Institut de Physique du Globe, Paris, France.
  23. Komatitsch, D. and Vilotte, J.P. (1998), "The spectral element method", Geophys. J. Int., 154, 146-153.
  24. Komatitsch, D. and Tromp, J. (1999), "Introduction to the spectral element method for three-dimensional seismic wave propagation", Geophys. J. Int., 139(3), 806-822. https://doi.org/10.1046/j.1365-246x.1999.00967.x
  25. Komatitsch, D. and Tromp, J. (2001), "Modelling of seismic wave propagation at the scale of the earth on a large Beowulf", Proceedings of the ACM/IEEE Supercomputing SC2001 Conference.
  26. Komatitsch, D., Tsuboi, S. and Tromp, J. (2005), "The spectral-element method in seismology", Seismic Earth: Array Analysis of Broadband Seismograms, 157, 205-228. https://doi.org/10.1029/157GM13
  27. Komatitsch, D. and Martin, R. (2007), "An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation", Geophysics, 72(5), 155-167. https://doi.org/10.1190/1.2714334
  28. Li, Y.F. and Bou Matar, O. (2010), "Convolutional perfectly matched layer for elastic second-order wave equation", J. Acoust. Soc. Am., 127(3), 1318-1327. https://doi.org/10.1121/1.3290999
  29. Maday, Y. and Patera, A.T. (1989), "Spectral element methods for the incompressible Navier-Stokes equations", State of the art Surveys in Computational Mechanics, ASME, New York, 71-143.
  30. Malvern, L.E. (1969), Introduction to the mechanics of a continuous medium, Prentice Hall.
  31. Meyer, C.D. (2000), Matrix analysis and applied linear algebra, SIAM, Philadelphia.
  32. Meza-Fajardo, K.C. (2007), "Numerical simulation of wave propagation in unbounded elastic domains using the spectral element method", European School for Reduction of Seismic Risk (ROSE School), University of Pavia, Italy.
  33. Meza-Fajardo, K.C. and Papageorgiou, A.S. (2008), "A non-convolutional split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis", B. Seismol. Soc. Am., 98(4), 1811-1836. https://doi.org/10.1785/0120070223
  34. Meza-Fajardo, K.C. and Papageorgiou, A.S. (2010), "On the stability of a non-convolutional perfectly matched layer for isotropic elastic media", Soil Dyn. Earthq. Eng., 30(3), 68-81. https://doi.org/10.1016/j.soildyn.2009.09.002
  35. Modak, S. and Sotelino, E.D. (2002), "The generalized method for structural dynamics applications", Adv. Eng. Softw., 33(7-10), 565-577. https://doi.org/10.1016/S0965-9978(02)00079-0
  36. Orzag, S.A. (1980), "Spectral element methods for problems in complex geometries", J. Comput. Phys., 37(1), 70-92. https://doi.org/10.1016/0021-9991(80)90005-4
  37. Padovani, E., Priolo, E. and Seriani, G. (1994), "Low- and high-order finite element method: Experience in seismic modeling", J. Comput. Acoust., 2(4), 371-422. https://doi.org/10.1142/S0218396X94000233
  38. Patera, A.T. (1984), "A spectral element method for fluid dynamics: laminar flow in a channel expansion", J. Comput. Phys., 54(3), 468-488. https://doi.org/10.1016/0021-9991(84)90128-1
  39. Priolo, E. and Seriani, G. (1991), "A numerical investigation of Chebyshev spectral element method for acoustic wave propagation", Proceedings of the 13th IMACS Conference on Computational Applied Mathematics, Dublin, Ireland, 2, 551-556.
  40. Priolo, E., Carcione, J.M. and Seriani, G. (1994), "Numerical simulation of interface waves by high-order spectral modelling techniques", J. Acoust. Soc. Am., 95(2), 681-693. https://doi.org/10.1121/1.408428
  41. Priolo, E. (1999), "Earthquake ground motion simulation through the 2-D spectral element method", Proceedings of the International Conference on Computational Acoustics, Trieste, Italy.
  42. Ricker, N. (1945), "The computation of output disturbances from amplifiers for true wavelet inputs", Geophysics, 10(2), 207-220. https://doi.org/10.1190/1.1437162
  43. Sato, H. and Fehler, M. (1998), Seismic wave propagation and scattering in the heterogeneous earth, AIP Press/ Springer Verlag, New York.
  44. Schwab, C.H. (1998), Up- and hp-finite element methods, Oxford University Press, Oxford.
  45. Seriani, G. and Priolo, E. (1994), "Spectral element method for acoustic wave simulation in heterogeneous media", Finite Elem. Anal. Des., 16(3-4), 337-348. https://doi.org/10.1016/0168-874X(94)90076-0
  46. Seriani, G. and Oliveira, S.P. (2008), "Dispersion analysis of spectral element methods for elastic wave propagation", Wave Motion, 45(6), 729-744. https://doi.org/10.1016/j.wavemoti.2007.11.007
  47. Simmonds, J.G. (1994), A brief on tensor analysis, Second Edition, Springer-Verlag.

피인용 문헌

  1. Modeling of SH-waves in a fiber-reinforced anisotropic layer vol.10, pp.1, 2016, https://doi.org/10.12989/eas.2016.10.1.091
  2. Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method vol.14, pp.12, 2014, https://doi.org/10.3390/s140203477
  3. Dispersion analysis of multi-modal waves based on the Reassigned Cross-S-Transform vol.143, pp.None, 2021, https://doi.org/10.1016/j.soildyn.2021.106610