참고문헌
- ACI 318.RM-02 (2002), Building code requirements for structural concrete. ACI Committee 318, American Concrete Institute.
- ACI 363.R-92 (1997), State-of-art-report on high strength concrete. ACI Committee 363, American Concrete Institute.
- ACI 544.1R-96 (1996), State-of-the-art report on fiber reinforced concrete. ACI Committee 544, American Concrete Institute, 1996.
- Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
- Altun, F., Ki i, O. and Aydn, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comp. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- Baalbaki, W., Aitcin, P.C. and Ballivy, G. (1992), "On prediction modulus of elasticity in high-strength concrete", ACI Mater. J., 89(5), 517-520.
- CEB-FIB Model Code (1993), Bull. D'information CEB. 213/214. Lausanne.
- Demir, F. and Korkmaz, A. (2008), "Prediction of lower and upper bounds of elastic modulus of high strength concrete", Constr. Build. Mater., 22(7), 1385-1393. https://doi.org/10.1016/j.conbuildmat.2007.04.012
- Demir, F. (2005), A new way prediction of elastic modulus of normal and high strength concrete-fuzzy logic, Cement Concrete Res., 35(8), 1531-1538. https://doi.org/10.1016/j.cemconres.2005.01.001
- Demir, F., Uyguno lu, T. and Unal, O. (2006), "Fuzzy logic approach to predict to modulus of elasticity of steel fiber reinforced concrete in compression", Seventh International Congress on Advances in Civil Engineering, ACE06-513, Yildiz Technical University, stanbul.
- Ding, Y. and Kusterle, W. (2000), "Compressive stress-strain relationship of steel fibre-reinforced concrete at early age", Cement Concrete Res., 30(10), 1573-1579. https://doi.org/10.1016/S0008-8846(00)00348-3
- Duzgun, O.A., Gul, R. and Aydin, A.C. (2000), "Compressive stress-strain relationship of steel fibre-reinforced concrete at early age", Cement Concrete Res., 30(10), 1573-1579. https://doi.org/10.1016/S0008-8846(00)00348-3
- Eswari, S., Raghuanath, P.N. and Suguna, K. (2008), "Ductility performance of hybrid fibre reinforced concrete", American J. Appl. Sci., 5(9), 1257-1262. https://doi.org/10.3844/ajassp.2008.1257.1262
- Geso lu, M., Guneyisi, E. and Ozturan, T. (2002), "Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete", Cement Concrete Res., 32(10), 1545-1550. https://doi.org/10.1016/S0008-8846(02)00826-8
- Haktanir, T., Ari, K., Altun, F. and Karahan, O. (2007), "A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test", Constr. Build. Mater., 21(8), 1702-1708. https://doi.org/10.1016/j.conbuildmat.2006.05.031
- Hodhod, H. and Abdeen, M.A.M. (2009), "Experimental investigation and numerical modeling of the effect of natural and steel fibers on the performance of concrete", Int. J. Eng. (IJE), 4(5), 321-337.
- Ismail, H. Cagatay and Riza Dincer (2011), "Modeling of concrete containing steel fibers: toughness and mechanical properties", Comput. Concrete, 8(3), 357-369. https://doi.org/10.12989/cac.2011.8.3.357
- Jang, I.Y., Park, H.G. and Yoon, Y.S. (1996), "A proposal of elastic modulus equation for high-strength and ultrahigh- strength", Kor. Concrete Inst., 8(6), 213-222.
- Jo, B.W., Shon, Y.H. and Kim, Y.J. (2001), "The evalution of elastic modulus for steel fiber reinforced concrete", Russ. J. Nondestruct., 37(2), 152-161. https://doi.org/10.1023/A:1016780124443
- Karahan, O., Tany ld z , H. and At s, C.D. (2008), "An artificial neural network approach for prediction of longterm strength properties of steel fiber reinforced concrete containing fly ash", J. Zhejiang Univ. Sci. A, 9(11), 1514-1523. https://doi.org/10.1631/jzus.A0720136
- Kayali, O., Haque, M.N. and Zhu, B. (2003), "Some characteristics of high strength fiber reinforced lightweight aggregate concrete", Cement Concrete Comp., 25(2), 207-213. https://doi.org/10.1016/S0958-9465(02)00016-1
- Kiszka, J.B., Kochanskia, M.E. and Sliwinska, D.S. (1985), "The influence of some fuzzy implication operators on the accuracy of a fuzzy model Part II", Fuzzy Set Syst., 15(3), 223-240. https://doi.org/10.1016/0165-0114(85)90016-8
- Kurihara, N., Kunieda, M., Kamada, T., Uchida, Y. and Rokugo, K. (2000), "Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete", Eng. Fract. Mech., 65(2-3), 235-245. https://doi.org/10.1016/S0013-7944(99)00116-2
- Lim, D.H. and Oh, B.H. (1999), "Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams", Eng. Struct., 21(10), 937-944. https://doi.org/10.1016/S0141-0296(98)00049-2
- Patodi, S.C. and Purani, V.S. (1998), "Modeling flexural behavior of steel fibre reinforced concrete beams using neural networks", J. Build. Mater. Construc., 4, 28-35.
- Rao, G.A. and Prasad, B.K.R. (2000), Fracture toughness of fiber reinforced high strength concrete. Fourteenth Engineering Mechanics Conference, Department of Civil Engineering, The University of Texas, USA., May 21-24.
- Sen, Z. (1998), "Fuzzy algorithm for estimation of solar irradiation from sunshine duration", Sol. Energy, 63(1), 39-49. https://doi.org/10.1016/S0038-092X(98)00043-7
- Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
- Sorooshian, P. and Bayasi, Z. (1991), "Fiber type effects on the performance of steel fiber reinforced concrete", ACI Mater. J., 88(2), 53-60.
- Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Calculating the elastic moduli of steel-fiber reinforced concrete using a dedicated empirical formula", Comput. Mater. Sci., 31(3-4), 337-346. https://doi.org/10.1016/j.commatsci.2004.04.003
- Topçu, B. (2005), "Alternative estimation of the modulus of elasticity for dam concrete", Cement Concrete Res., 35(11), 2199-2202. https://doi.org/10.1016/j.cemconres.2004.08.010
- Unal, O., Demir, F. and Uyguno lu, T. (2007), "Fuzzy logic approach to predict stress-strain curves of steel fiber-reinforced concretes in compression", Build. Environ., 42(10), 3589-3595 https://doi.org/10.1016/j.buildenv.2006.10.023
- Uygunoglu, T. and Unal, O. (2006), "A new approach to determination of compressive strength of fly ash concrete using fuzzy logic", J. Sci. Ind. Res., 65(11), 894-899.
- Uygunoglu, T. (2008), "Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete", Mater. Struct., 41(8), 1441-1449. https://doi.org/10.1617/s11527-007-9341-y
- Williams, E.M., Graham, S.S., Akers, S.A., Reed, P.A. and Rushing, T.S. (2010), "Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers", Comput. Concrete, 7(2), 191-202. https://doi.org/10.12989/cac.2010.7.2.191
- Yazici, S., inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025
피인용 문헌
- Distributed models of self-stress value in textile-reinforced self-stressing concrete vol.126, 2016, https://doi.org/10.1016/j.conbuildmat.2016.06.149
- Experimental Study of the Basic Mechanical Properties of Directionally Distributed Steel Fibre-Reinforced Concrete vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/3578182
- Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.247
- Development of strength and elastic modulus of concrete sealed in steel tube under sustained load at early age vol.24, pp.7, 2012, https://doi.org/10.1177/1369433220978145