DOI QR코드

DOI QR Code

Concentration dependent dielectric properties of Barium Titanate/Polyvenylidene Fluoride (PVDF) and (Bi0.5Na0.5)0.94Ba0.06TiO3/Poly(VDF-TrFE) composite

  • Roy, Ansu K. (University Department of Physics, T. M. Bhagalpur University) ;
  • Ahmad, Z. (University Department of Physics, T. M. Bhagalpur University) ;
  • Prasad, A. (University Department of Physics, T. M. Bhagalpur University) ;
  • Prasad, K. (Centre for Applied Physics, Central University of Jharkhand)
  • Received : 2012.06.26
  • Accepted : 2012.09.13
  • Published : 2012.12.25

Abstract

The present study addresses the problem of quantitative prediction of effective complex relative permittivity of Barium Titanate/Polyvenylidene Fluoride (PVDF) and $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$/Poly(VDF-TrFE) biphasic ceramic-polymer composites. Theoretical results for effective relative permittivity derived from several dielectric mixture equations were fitted to the experimental data taken from the works of Prasad et al. (2010), Wang et al. (2004), Takenaka et al. (1991) and Yamada et al. (1982). The study revealed that out of the different test equations, only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation or Rao equation for the real part and Bruggeman equation for the imaginary part of complex permittivity well fitted the corresponding experimental results. In the present study, some of the equations were used in their original forms, while some others were modified by choosing suitable shape-dependent parameters in order to get reasonably good agreement with experimental results. Besides, the experimental results have been proposed in the form of a mathematical model using first order exponential growth, which provided excellent fits.

Keywords

References

  1. Ahmad, Z., Prasad, A. and Prasad, K. (2009), "A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites", Phys. B: Conden. Matter, 404(20), 3637-3644. https://doi.org/10.1016/j.physb.2009.06.009
  2. Al-Jishi, R. and Taylor, P.L. (1985), "Equilibrium polarization and piezoelectric and pyroelectric coefficients in poly(vinylidene fluoride)", J. Appl. Phys., 57(3), 902-906. https://doi.org/10.1063/1.334690
  3. Brookner, E. (1988), "Aspects of modern radars", Artech House, Norwood, MA.
  4. Bruggeman, D.A.G. (1935), "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. DielektrizitaEtskonstanten und LeitfaEhigkeiten der MischkoErper aus isotropen Substanzen", Ann. Phys. Lpz., 416(7), 636-664. https://doi.org/10.1002/andp.19354160705
  5. Cui, C., Baughman, R.H., lgbal, Z., Kazmar, T.R. and Dalstrom, D.K. (1997), "Improved piezoelectric ceramic/polymer composites for hydrophone applications", Synthetic Met., 85(1-3), 1391-1392. https://doi.org/10.1016/S0379-6779(97)80287-1
  6. Dang, Z.M. and Nan, C.W. (2005), "Dielectric properties of LTNO ceramics and LTNO/PVDF composites", Ceram. Int., 31(2), 349-351. https://doi.org/10.1016/j.ceramint.2004.05.008
  7. Das, C.J. and Das-Gupta, D.K. (1994), "Ferroelectric polymers and ceramic-polymer composites", Key Eng. Mater., 92-93, 217-248. https://doi.org/10.4028/www.scientific.net/KEM.92-93.217
  8. Das, C.J. and Das-Gupta, D.K. (1996), "Inorganic ceramic/polymer ferroelectric composite electrets", IEEE T. Dielect El. In., 3(5), 706-734. https://doi.org/10.1109/94.544188
  9. Dionne, F.F., Firtzgerald, J.F. and Aucoin, R.C. (1976), "Dielectric constants of paraffin wax $TiO_2$ mixtures", J. Appl. Phys., 47(4), 1708-1709. https://doi.org/10.1063/1.322753
  10. Furukawa, T. (1989), "Piezoelectricity and pyroelectricity in polymers", IEEE T. El. In., 24(3), 375-394. https://doi.org/10.1109/14.30878
  11. Furukawa, T., Ishida, K. and Fukuda, E. (1979), "Piezoelectric properties in the composite systems of polymers and PZT ceramics", J. Appl. Phys., 50(7), 4904-4913. https://doi.org/10.1063/1.325592
  12. Goel, M. (2004), "Recent developments in electroceramics: MEMS applications for energy and environment", Ceram. Int., 30(7), 1147-1154. https://doi.org/10.1016/j.ceramint.2003.12.012
  13. Hashin, Z. and Shtrikman, S.A. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solids, 11(2), 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  14. Jayasundere, N. and Smith, B.V. (1993), "Dielectric constant for binary piezoelectric 0-3 composites", J. Appl. Phys., 73(5), 2462-2467. https://doi.org/10.1063/1.354057
  15. Jayasundere, N., Smith, B.V. and Dunn, J.R. (1994), "Piezoelectric constant for binary piezoelectric 0-3 connectivity composites and the effect of mixed connectivity", J. Appl. Phys., 76(5), 2993-2999. https://doi.org/10.1063/1.357546
  16. Jha, A.K. and Prasad, K. (2010), "Ferroelectric $BaTiO_3$ nanoparticles: biosynthesis and characterization", Colloid. Surface B., 75(1), 330-334. https://doi.org/10.1016/j.colsurfb.2009.09.005
  17. Kerner, E.H. (1956), "The electrical conductivity of composite media", Proc. Phys. Soc., 69(8), 802-807. https://doi.org/10.1088/0370-1301/69/8/304
  18. Knott, E.F. (1993), "Dielectric constant of plastic foams", IEEE T. Antenn. Propag., 41(8), 1167-1171. https://doi.org/10.1109/8.244664
  19. Kuo, D.H., Chang, C.C., Su, T.Y., Wang W.K. and Lin, B.Y. (2004), "Dielectric properties of three ceramic/epoxy composites", Mater. Chem. Phys., 85(1), 201-206. https://doi.org/10.1016/j.matchemphys.2004.01.003
  20. Kutnjak, Z., Vodopivec, B., KuöËer, D., Kosec, M., Bobnar, V. and Hilczer, B. (2005), "Calorimetric anddielectric study of vinylidene fluoride-trifluoroethylene-based composite", J. Non-Cryst. Solids, 351(14-15), 1261-1265. https://doi.org/10.1016/j.jnoncrysol.2005.02.016
  21. Lam, K.H. Wang, X. and Chan, H.L.W. (2005), "Piezoelectric and pyroelectric properties of $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$/P(VDF-TrFE) 0-3 composites", Compos. Part A - Appl. S., 36(11), 1595-1599. https://doi.org/10.1016/j.compositesa.2005.03.007
  22. Lam, K.H., Chan, H.L.W., Luo, H.S., Yin, Q.R., Yin, Z.W. and Choy, C.L. (2003), "Dielectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites", Microelectron. Eng., 66(1-4), 792-797. https://doi.org/10.1016/S0167-9317(02)01001-8
  23. Levassort, F., Topolov, V.Y. and Lelhiecq, M. (2000), "A comparative study of different methods of evaluating effective electromechanical properties of 0-3 and 1-3 ceramic/polymer composites", J. Phys. D Appl. Phys., 33(16), 2064-2069. https://doi.org/10.1088/0022-3727/33/16/319
  24. Newnham, R.E, Skinner, D.P. and Cross, L.E. (1978), "Connectivity and piezoelectric-pyroelectric composites", Mater. Res. Bull., 13(5), 525-536. https://doi.org/10.1016/0025-5408(78)90161-7
  25. Newnham, R.E., Bowen, L.J., Klicker, K.A. and Cross. L.E. (1980), "Composite piezoelectric transducers", Mater. Eng., 2(2), 93-106.
  26. Newnham, R.E., Skinner, D.P., Klicker, K.A., Bhalla, A.S., Hardiman, B. and Gururaja, T.R. (1980), "Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications", Ferroelectrics, 27(1), 49-55. https://doi.org/10.1080/00150198008226063
  27. Poon, Y.M. and Shin, F.G. (2004), "A simple explicit formula for the effective dielectric constant of binary 0-3 composites", J. Mater. Sci., 39(4), 1277-1281. https://doi.org/10.1023/B:JMSC.0000013886.21054.e4
  28. Popielarz, R., Chiang, C.K., Nozaki, R. and Obrzut, J. (2001), "Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz", Macromolecules, 34(17), 5910-5915. https://doi.org/10.1021/ma001576b
  29. Prasad, A. and Prasad, K. (2007), "Effective permittivity of random composite media: A comparative study", Phys. B Conden. Mat., 396(1-2), 132-137. https://doi.org/10.1016/j.physb.2007.03.025
  30. Prasad, A., Bagchi, S. and Pathak, S.C. (2001), "Empirical formulation of permittivity build-up of bound rutile samples-I", Indian J. Pure Ap. Phy., 39(6), 397-405.
  31. Prasad, K., Prasad, A., Chandra, K.P. and Kulkarni, A.R. (2010), "Electrical conduction in 0-3 $BaTiO_3$/PVDF composites", Int. Ferroelectrics, 117(1), 55-67. https://doi.org/10.1080/10584587.2010.489425
  32. Rao, Y., Qu, J. Wong, C.P. and Marinis, T. (2000), "A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory", IEEE T. Compon. Pack. T., 23(4), 680-683. https://doi.org/10.1109/6144.888853
  33. Shrout, T.R., Bawen, L.J. and Schulze, W.A. (1980), "Extruded PZT/polymer composites for electromechanical transducer applications", Mater. Res. Bull., 15(10), 1371-1379. https://doi.org/10.1016/0025-5408(80)90090-2
  34. Skipetrov, S.E. (1999), "Effective dielectric function of a random medium", Phys. Rev. B, 60(18), 12705-12709. https://doi.org/10.1103/PhysRevB.60.12705
  35. Smay, J.E., Cesarano, J., Tuttle, B.A. and Lewis, J.A. (2002), "Piezoelectric properties in the composite systems of polymers and PZT ceramics", J. Appl. Phys., 50(7), 6119-6127.
  36. Takenaka, T., Maruyama K.I. and Sakata, K. (1991), "$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ system for lead-free piezoelectric ceramics", Jpn. J. Appl. Phys., 30, 2236-2239. https://doi.org/10.1143/JJAP.30.2236
  37. Taylor, L. (1965), "Dielectric properties of mixtures", IEEE T. Antenn. Propag., 13(6), 943-947. https://doi.org/10.1109/TAP.1965.1138567
  38. Wang, X.X., Lam, K.H., Tang, X.G. and Chan, H.L.W. (2004), "Dielectric characteristics and polarization response of lead-free ferroelectric (Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$-P(VDF-TrFE) 0-3 composites", Solid State Commun., 130(10), 695-699. https://doi.org/10.1016/j.ssc.2004.03.020
  39. Webman, I., Jortner, J. and Cohen, M.H. (1977), "Theory of optical and microwave properties of microscopically inhomogeneous materials", Phys. Rev. B, 15(12), 5712-5723. https://doi.org/10.1103/PhysRevB.15.5712
  40. Wiener, O. (1912), "Die Theorie des Mischkorpers fr das Feld der Stationaren Strdmung", Abh. Math. Phys. Kl. Sachs Akad. Wiss: Leipzig, 32, 509-514.
  41. Xie, S.H. Zhu, B.K., Wei, X.Z., Xu, Z.K. and Xu, Y.Y. (2005), "Polyimide/$BaTiO_3$ composites with controllable dielectric properties", Compos. Part A - Appl. S., 36(8), 1152-1157. https://doi.org/10.1016/j.compositesa.2004.12.010
  42. Yamada, T., Ueda, T. and Kitayama, T. (1982), "Piezoelectricity of a high-content lead zirconate titanate/polymer composite", J. Appl. Phys., 53(6), 4328-4333. https://doi.org/10.1063/1.331211

Cited by

  1. Electrical and magnetic properties of 0–3 Ba(Fe1∕2Nb1∕2)O3/PVDF composites vol.07, pp.06, 2017, https://doi.org/10.1142/S2010135X17500369