References
- Barakos, G., Mitsoulis, E., Tzoganakis, C. and Kajiwara, T. (1996), "Rheological characterization of controlledrheology polypropylenes using integral constitutive equations", J. Appl. Polym. Sci., 59(3), 543-556. https://doi.org/10.1002/(SICI)1097-4628(19960118)59:3<543::AID-APP21>3.0.CO;2-T
- Berzin, F., Vergnes, B. and Delamare, L. (2001), "Rheological behavior of controlled-rheology polypropylenes obtained by peroxide-promoted degradation during extrusion: Comparison between homopolymer and copolymer", J. Appl. Polym. Sci., 80(8), 1243-1252. https://doi.org/10.1002/app.1210
- Carrot, C., Revenu, P. and Guillet, J. (1996), "Rheological behavior of degraded polypropylene melts: From MWD to dynamic moduli", J. Appl. Polym. Sci., 61(11), 1887-1897. https://doi.org/10.1002/(SICI)1097-4628(19960912)61:11<1887::AID-APP4>3.0.CO;2-F
- Combs, R.L., Slonaker, D.F. and Coover, H.W. (1969), "Effects of molecular weight distribution and branching on rheological properties of polyolefin melts", J. Appl. Polym. Sci., 13(3), 519-534. https://doi.org/10.1002/app.1969.070130312
- Derrida, B. (1980), "Random-energy model: Limit of a family of disordered models", Phys. Rev. Lett., 45(2), 79-82. https://doi.org/10.1103/PhysRevLett.45.79
-
Dlubek, G., Bamford, D., Rodriguez-Gonzalez, A., Bornemann, S., Stejny, J., Schade, B., Alam, M.A. and Arnold, M. (2002), "Free volume, glass transition, and degree of branching in metallocene-based propylene/
${\alpha}$ -olefin copolymers: Positron lifetime, density, and differential scanning calorimetric studies", J. Polym. Sci. Pol. Phys., 40(5), 434-453. https://doi.org/10.1002/polb.10108 - Doi, M. and Edwards, S.F. (1986), The theory of polymer dynamics, Oxford University Press, New York.
- Drozdov, A.D. and Christiansen, J.D. (2003), "The effect of annealing on the nonlinear viscoelastic response of isotactic polypropylene", Polym. Eng. Sci., 43(4), 946-959. https://doi.org/10.1002/pen.10078
- Drozdov, A.D. and Christiansen, J.D. (2003), "The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylene", Comp. Mater. Sci., 27(4), 403-422. https://doi.org/10.1016/S0927-0256(03)00040-5
- Drozdov, A.D., Agrawal, S. and Gupta, R.K. (2005), "The effect of temperature on the viscoelastic response of polymer melts", Int. J. Eng. Sci., 43(3-4), 304-320. https://doi.org/10.1016/j.ijengsci.2004.08.009
- Drozdov, A.D. and Yuan, Q. (2003), "The viscoelastic and viscoplastic behavior of low-density polyethylene", Int. J. Solids Struct., 40(10), 2321-2342. https://doi.org/10.1016/S0020-7683(03)00074-X
- Drozdov, A.D. and Yuan, Q. (2003), "Effect of annealing on the viscoelastic and viscoplastic responses of lowdensity polyethylene", J. Polym. Sci. Pol. Phys., 41(14), 1638-1655. https://doi.org/10.1002/polb.10507
- Drozdov, A.D. (2003), "Kinetic equations for thermal degradation of polymers", arXiv:cond-mat/0309677v1[cond-mat.mtrl-sci].
- Eckstein, A., Friedrich, C., Lobbrecht, A., Spitz, R. and Mülhaupt, R. (1997), "Comparison of the viscoelastic properties of syndio- and isotactic polypropylenes", Acta Polym., 48(1-2), 41-46. https://doi.org/10.1002/actp.1997.010480107
- Fayolle, B., Audouin, L. and Verdu, J. (2002), "Initial steps and embrittlement in the thermal oxidation of stabilised polypropylene films", Polym. Degrad. Stabil., 75(1), 123-129. https://doi.org/10.1016/S0141-3910(01)00211-7
- Ferry, J.D. (1980), Viscoelastic properties of polymers, 3rd Ed., Wiley, New York.
- Fujiyama, M., Kitajima, Y. and Inata, H. (2002), "Rheological properties of polypropylenes with different molecular weight distribution characteristics", J. Appl. Polym. Sci., 84(12), 2128-2141. https://doi.org/10.1002/app.10375
- Fujiyama, M. and Inata, H. (2002), "Rheological properties of metallocene isotactic polypropylenes", J. Appl. Polym. Sci., 84(12), 2157-2170. https://doi.org/10.1002/app.10482
- Gao, J.M., Lu, Y.J., Wei, G.S., Zhang, X.H., Liu, Y.Q. and Qiao, J.L. (2002), "Effect of radiation on the crosslinking and branching of polypropylene", J. Appl. Polym. Sci., 85(8), 1758-1764. https://doi.org/10.1002/app.10716
- Gao, Z., Kaneko, T., Amasaki, I. and Nakada, M. (2003), "A kinetic study of thermal degradation of polypropylene", Polym. Degrad. Stabil., 80(2), 269-274. https://doi.org/10.1016/S0141-3910(02)00407-X
- Gennes, P.G. (1979), Scaling concepts in polymer physics, Cornell University Press, Ithaca, N.Y.
- Graessley, W. (1982), "Entangled linear, branched and network polymer systems - Molecular theories", Adv. Polym Sci., 47, 67-117. https://doi.org/10.1007/BFb0038532
- Green, M.S. and Tobolsky, A.V. (1946), "A new approach to the theory of relaxing polymeric media", J. Chem. Phys., 14(2), 80-92. https://doi.org/10.1063/1.1724109
- Horrocks, A.R., Valinejad, K. and Crighton, J.S. (1994), "Demonstration of the possible competing effects of oxidation and chain scission in orientated and stressed polypropylenes", J. Appl. Polym. Sci., 54(5), 593-600. https://doi.org/10.1002/app.1994.070540510
- Iijima, M. and Strobl, G. (2000), "Isothermal crystallization and melting of isotactic polypropylene analyzed by time- and temperature-dependent small-angle X-ray scattering experiments", Macromolecules, 33(14), 5204-5214. https://doi.org/10.1021/ma000019m
- Kim, Y.C., Yang, K.S. and Choi, C.H. (1998), "Study of the relationship between shear modification and melt fracture in extrusion of LDPE", J. Appl. Polym. Sci., 70(11), 2187-2195. https://doi.org/10.1002/(SICI)1097-4628(19981212)70:11<2187::AID-APP13>3.0.CO;2-5
- Kim, M.H., Londono, J.D. and Habenschuss, A. (2000), "Structure of molten stereoregularpolyolefins with different side-chain sizes: Linear polyethylene, polypropylene, poly(1-butene), and poly(4-methyl-1-pentene)", J. Polym. Sci. Pol. Phys., 38, 2480-2485. https://doi.org/10.1002/1099-0488(20000915)38:18<2480::AID-POLB150>3.0.CO;2-8
- Kumar, G.S., Kumar, V.R. and Madras, G. (2002), "Continuous distribution kinetics for the thermal degradation of LDPE in solution", J. Appl. Polym. Sci., 84(4), 681-690. https://doi.org/10.1002/app.2344
- Lodge, A.S. (1968), "Constitutive equations from molecular network theories for polymer solutions", Rheol. Acta, 7(4), 379-392. https://doi.org/10.1007/BF01984856
- Matsuda, H., Aoike, T., Uehara, H., Yamanobe, T. and Komoto, T. (2001), "Overlapping of different rearrangement mechanisms upon annealing for solution-crystallized polyethylene", Polymer, 42(11), 5013-5021. https://doi.org/10.1016/S0032-3861(00)00893-4
- Mader, D., Heinemann, J., Walter, P. and Mulhaupt, R. (2000), "Influence of n-alkyl branches on glass-transition temperatures of branched polyethylenes prepared by means of metallocene- and palladium-based catalysts", Macromolecules, 33(4), 1254-1261. https://doi.org/10.1021/ma991096o
- Perez, C.J., Cassano, G.A., Valles, E.M., Quinzani, L.M. and Failla, M.D. (2003), "Tensile mechanical behavior of linear high-density polyethylenes modified with organic peroxide", Polym. Eng. Sci., 43(9), 1624-1633. https://doi.org/10.1002/pen.10136
- Rangarajan, P., Bhattacharyya, D. and Grulke, E. (1998), "HDPE liquefaction: Random chain scission model", J. Appl. Polym. Sci., 70(6), 1239-1251. https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1239::AID-APP20>3.0.CO;2-T
- Sugimoto, M., Masubuchi, Y., Takimoto, J. and Koyama, K. (2001), "Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow", J. Polym. Sci. Pol. Phys., 39(21), 2692-2704. https://doi.org/10.1002/polb.10012
- Sugimoto, M., Masubuchi, Y., Takimoto, J. and Koyama, K. (2001), "Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. uniaxial and biaxial extensional flow", Macromolecules, 34(17), 6056-6063. https://doi.org/10.1021/ma0015525
- Sweeney, J., Collins, T.L.D., Coates, P.D. and Duckett, R.A. (1999), "High-temperature large strain viscoelastic behavior of polypropylene modeled using an inhomogeneously strained network", J. Appl. Polym. Sci., 72(4), 563-575. https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4<563::AID-APP13>3.0.CO;2-#
- Tanaka, F. and Edwards, S.F. (1992), "Viscoelastic properties of physically cross-linked networks - transient network theory"; Macromolecules, 25(5), 1516-1523. https://doi.org/10.1021/ma00031a024
-
Tiemblo, P., Gomez-Elvira, J.M., Beltran, S.G., Matisova-Rychla, L. and Rychly, J. (2002), "Melting and a Relaxation Effects on the Kinetics of Polypropylene Thermooxidation in the Range
$80170^{\circ}C$ ", Macromolecules, 35(15), 5922-5926. https://doi.org/10.1021/ma0119373 - Van Prooyen, M., Bremner, T. and Rudin, A. (1994), "Mechanism of shear modification of low density polyethylene", Polym. Eng. Sci., 34(7), 570-579. https://doi.org/10.1002/pen.760340705
- Wang, X., Tzoganakis, C. and Rempel, G. L. (1996), "Chemical modification of polypropylene with peroxide/pentaerythritoltriacrylate by reactive extrusion", J. Appl. Polym. Sci., 61(8), 1395-1404. https://doi.org/10.1002/(SICI)1097-4628(19960822)61:8<1395::AID-APP21>3.0.CO;2-X
- Yamamoto, M. (1956), "The visco-elastic properties of network structure I. general formalism", J. Phys. Soc. Jpn., 11(4), 413-421. https://doi.org/10.1143/JPSJ.11.413
Cited by
- Fiber Reinforced Polymer and Polypropylene Composite Retrofitting Technique for Masonry Structures vol.7, pp.12, 2015, https://doi.org/10.3390/polym7050963
- A comparative analysis of sheeting die geometries using numerical simulations vol.5, pp.2, 2020, https://doi.org/10.12989/acd.2020.5.2.111