DOI QR코드

DOI QR Code

Performance assessment of {tris (2-methyl-1-aziridinyl) phosphine oxide} photocatalytic mineralization in a falling film reactor, using response surface methodology

  • Saien, J. (Department of Applied Chemistry, Bu-Ali Sina University) ;
  • Raeisi, A. (Department of Applied Chemistry, Bu-Ali Sina University) ;
  • Soleymani, A.R. (Department of Applied Chemistry, Malayer University) ;
  • Norouzi, M. (Department of Applied Chemistry, Bu-Ali Sina University)
  • Received : 2012.06.30
  • Accepted : 2012.12.12
  • Published : 2012.12.25

Abstract

Tris (2-methyl-1-aziridinyl) phosphine oxide (MAPO) is extremely poisonous and persistent in aqueous media. An efficient UV/nano$TiO_2$ process was employed for its mineralization in a high duty falling film photo-reactor based on an experimental design scheme that considers interactions between the main variables. The influencing variables and their range were determined with preliminary studies. The results show substrate mineralization to some extent under mild conditions of: T = $30^{\circ}C$, pH = 8.5, $[MAPO]_0=60\;mg\;L^{-1}$ and $[TiO_2]=110\;mg\;L^{-1}$. The relative importance of the influencing parameters were initial pH > temperature > $[MAPO]_0$ > [$TiO_2$]; while the interdependence of all the parameters was significant. Accordingly, a reduced quadratic expression was developed. Meanwhile, mineralization kinetic studies, based on chemical oxygen demand, revealed a power law model with order of 2.6 during process time until 150 min.

Keywords

References

  1. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E. and Mehranian, M. (2005), "Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater Fentons peroxide", J. Hazard. Mater., 123(1-3), 187-195. https://doi.org/10.1016/j.jhazmat.2005.03.042
  2. Arias-Pardilla, J., Otero, T.F., Blanco, R. and Segura, J.L. (2010), "Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly (3,4-ethylenedioxythiophene)", Electrochim. Acta, 55(5), 1535-1542. https://doi.org/10.1016/j.electacta.2009.10.011
  3. APHA (1998), Standard Methods for the Examination of Water and Wastewater, 20th Edition, Washington DC.
  4. Betianu, C., Caliman, F.A., Gavrilescu, M., Cretescu, I., Cojocaru, C. and Poulios, I. (2008) "Response surface methodology applied for Orange II photocatalytic degradation in $TiO_2$ aqueous suspensions", J. Chem. Technol. Biot., 83(11), 1454-1456. https://doi.org/10.1002/jctb.1973
  5. Burns, R.A., Crittenden, J.C., Hand, D.W., Selzer, V.H., Sutter, L.L., Salman, S.R. (1999), "Effect of inorganic ions in heterogeneous photocatalysis of TCE", J. Environ. Eng.: ASCE, 125(1), 77-85. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:1(77)
  6. Coelho, L.F., de Lima, C.J.B., Rodovalho, C.M., Bernardo, M.P. and Contiero, J. (2011), "Lactic acid production by new Lactobacillus plantarum LMISM6 grown in molasses: optimization of medium composition", Braz. J. Chem. Eng., 28(1), 27-36. https://doi.org/10.1590/S0104-66322011000100004
  7. Daneshvar, N., Rabbani, M., Modirshahla, N. and Behnajady, M.A. (2005), "Photooxidative degradation of Acid Red 27 in a tubular continuous-flow photoreactor: Influence of operational parameters and mineralization products", J. Hazard. Mater. 118(1-3), 155-160. https://doi.org/10.1016/j.jhazmat.2004.10.007
  8. Dopar, M., Kusic, H. and Koprivanac, N. (2010), "Treatment of simulated industrial wastewater by photo- Fenton process. Part I: The optimization of process parameters using design of experiments (DOE)", Chem. Eng. J., 173(2), 267-279.
  9. Eltayeb, A.E., Khalil, O., Alhallaj, S. and Teymour, F. (2010), "Design and modeling of optimization of optical modules for use in the "Emerald Forest" algae photobioreactors", Comput. Chem. Eng., 34(9), 1323-1340. https://doi.org/10.1016/j.compchemeng.2010.02.019
  10. Gembitskii, P.A., Loim, N.M. and Zhuk, D.S. (1966), "Aziridine: Synthesis, structure, properties", Russ. J. Chem. Rev., 35(2), 105-122. https://doi.org/10.1070/RC1966v035n02ABEH001434
  11. Guaracho, V.V., Kaminari, N.M.S., Ponte, M.J.J.S. and Ponte, H.A. (2009), "Central composite experimental design applied to removal of lead and nickel from sand", J. Hazard. Mater., 172(2-3), 1087-1092. https://doi.org/10.1016/j.jhazmat.2009.07.100
  12. Guimaraes, J.R. and Barretto, A.S. (2003), "Photocatalytic inactivation of Clostridium perfringens and coliphages in water", Braz. J. Chem. Eng., 20(4), 403-411. https://doi.org/10.1590/S0104-66322003000400007
  13. Habibi, M.H., Hassanzadeh, A. and Mahdavi, S. (2005), "The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous $TiO_2$ suspensions", J. Photochem. Photobiol. A: Chem., 172(1), 89-96. https://doi.org/10.1016/j.jphotochem.2004.11.009
  14. Herrmann, J.M. (1999), "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catal. Today, 53(1), 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
  15. Hu, C., Yu, J.C., Hao, Z. and Wong, P. (2003), "Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes", Appl. Catal. B: Environ., 46(1), 35-47. https://doi.org/10.1016/S0926-3373(03)00139-5
  16. Kabra, K., Chaudhary, R., and Sawhney, R.L. (2004), "Treatment of hazardous organic and Inorganic compounds through aqueous-phase photocatalysis: A review", Ind. Eng. Chem. Res., 43(24), 7683-7696. https://doi.org/10.1021/ie0498551
  17. Kasiri, M.B. and Khataee, A.R. (2011), "Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design", Desalination, 270(1-3), 151-159. https://doi.org/10.1016/j.desal.2010.11.039
  18. Kawamoto, A.M. and Wills, M. (2002), "Enantioselective synthesis of aziridines using asymmetric transfer hydrogenation as a precursor for chiral derivatives used as bonding agent for rocket solid propellants", Quim. Nova, 25(6A), 921-925.
  19. Khuri, A.I. and Mukhopadhyay, S. (2010), "Response surface methodology", Wiley Interdis. Rev.: Comput. Statis., 2(2), 128-149. https://doi.org/10.1002/wics.73
  20. Kumar, K.V., Porkodi, K. and Selvaganapathi, A. (2007), "Constrain in solving Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst", Dyes Pigments, 75(1), 246-249. https://doi.org/10.1016/j.dyepig.2006.05.035
  21. Langsjoen, A., Jones, G.D., Zomlefer, J. and Neumann, N.M.C. (1944), "Polymerization of ethyleneimine", J. Org. Chem., 9, 125-147. https://doi.org/10.1021/jo01184a002
  22. Levenspiel, O. (1999), Chemical Reaction Engineering, 3rd Edition, John Wiley and Sons, NJ.
  23. Montgomery, D.C. (2001), Design and Analysis of Experiments, 5th Edition, John Wiley and Sons, NJ.
  24. Nematollahi, D. and Maleki, A. (2009) "Electrochemical oxidation of N,N-dialkyl-p-phenylenediamines in the presence of arylsulfinic acids. An efficient method for the synthesis of new sulfonamide derivatives", Electrochem. Commun., 11(2), 488-491. https://doi.org/10.1016/j.elecom.2008.12.028
  25. Parsa, J.B. and Abbasi, M. (2010), "Modeling and optimizing of sonochemical degradation of Basic Blue 41 via response surface methodology", Cent. Eur. J. Chem., 8(5), 1069-1077. https://doi.org/10.2478/s11532-010-0086-z
  26. Saien, J., Ardjmand, R.R. and Iloukhani, H. (2003), "Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of $TiO_2$", Phys. Chem. Liq., 41(5), 519-531. https://doi.org/10.1080/00319100310001604849
  27. Saien, J., Delavari, H. and Solymani, A.R. (2010), "Sono-assisted photocatalytic degradation of styreneacrylic acid copolymer in aqueous media with nano titania particles and kinetic studies", J. Hazard. Mater., 177(1-3), 1031-1038. https://doi.org/10.1016/j.jhazmat.2010.01.024
  28. Saien, J., Ojaghloo, Z., Soleymani, A.R. and Rasoulifard, M.H. (2011), "Homogeneous and hetrogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania, hydrogen peroxide and potassium persulfate", Chem. Eng. J., 167(1), 172-182. https://doi.org/10.1016/j.cej.2010.12.017
  29. Saien, J. and Soleymani, A. (2007), "Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by $UV/TiO_2$ process and employing a new method in kinetic study", J. Hazard. Mater., 144(1-2), 506-512. https://doi.org/10.1016/j.jhazmat.2006.10.065
  30. Saien, J. and Soleymani, A.R. (2009), "Comparative investigations on nano and micro titania photocatalysts in degradation and mineralization: Use of turbidity in kinetic studies", J. Iran Chem. Soc., 6(3), 602-611. https://doi.org/10.1007/BF03246540
  31. Saien, J. and Soleymani, A.R. (2012), "Feasibility of using a slurry falling film photo-reactor for individual and hybridized AOPS", J. Ind. Eng. Chem. 18(5), 1683-1688.
  32. Sakkas, V.A., Islam, M., Stalikas, C. and Albanis, T.A. (2010), "Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation", J. Hazard. Mater., 175(1-3), 33-44. https://doi.org/10.1016/j.jhazmat.2009.10.050
  33. Serpone, N. (1997), "Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis", J. Photochem. Photobiol. A: Chem., 104(1-3), 1-12. https://doi.org/10.1016/S1010-6030(96)04538-8
  34. Thiruvenkatachari, R. Vigneswaran S. and Moon I.S. (2008), "A review on UV/TiO2 photocatalytic oxidation process", Korean J. Chem. Eng., 25(1), 64-72. https://doi.org/10.1007/s11814-008-0011-8