참고문헌
- ACI Committee 216 (1994), "Guide for determining the fire endurance of concrete elements", American Concrete Institute Committee Report, 216R1-48.
- Ahmed, G. and Hurst, J.P. (1999), "Modeling pore pressure, moisture, and temperature in high strength concrete columns exposed to fire", Fire Technol., 35, 232-262. https://doi.org/10.1023/A:1015436510431
- Alnahhal, W.I., Chiewanichakorn M., Aref, A.J. and Alampalli, S. (2006), "Temporal thermal behavior and damage simulations of FRP deck", J. Bridge Eng., 11(4), 452-464. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(452)
- Alnahhal, W.I., Chiewanichakorn, M. and Aref, A.J. (2007), "Simulations of structural behaviour of fibrereinforced polymer bridge deck under thermal effects", Int. J. Mater. Product Technol., 28(1-2), 122-140. https://doi.org/10.1504/IJMPT.2007.011513
- Branco, F.A. and Mendes, P.A. (1993), "Thermal actions for concrete bridge design", J. Struct. Eng., 119(8), 2313-2231. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:8(2313)
- California Interchange Collapses After Tanker Fire, FOX news Channel (2007), http://www.foxnews.com/story/0,2933,269118,00.html
- Chen, J., Young, B. and Uy, B. (2006), "Behavior of high strength structural steel at elevated temperatures", J. Struct. Eng., 132, 1948-1954. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1948)
- Cheng, F., Kodur, V.K.R. and Wang, T. (2004), "Stress-strain curves for high strength concrete at elevated temperature", J. Mater. Civil Eng., 16(1), 84-90. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(84)
- Choi, J., Kim, H.S. and Haj-Ali, R.M. (2010), "Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures", Steel Compos. Struct., 10(2), 129-149. https://doi.org/10.12989/scs.2010.10.2.129
- Dotreppe, J.C., Majkut, S. and Franssen, J.M. (2006), "Failure of a tied-arch bridge submitted to a severe localized fire", Struct. Extreme Events, IABSE Symposium, 272-273.
- Elghazouli, A.Y. and Izzuddin, B.A. (2000), "Response of idealised composite beam-slab systems under fire conditions", J. Constr. Steel Res., 56, 199-224. https://doi.org/10.1016/S0143-974X(00)00006-7
- Elghazouli, A.Y. and Izzuddin, B.A. (2004), "Realistic modeling of composite and reinforced concrete floor slabs under extreme loading. I: analytical method", J. Struct. Eng., 130(12), 1972-1984. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1972)
- Elghazouli, A.Y., Izzuddin, B.A. and Richadson, A.J. (2000), "Numerical modeling of the structural fire behavior of composite buildings", Fire Safety J., 35, 279-297. https://doi.org/10.1016/S0379-7112(00)00044-8
- ENV (1995), "Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design", 1992- 1-2 European Pre-standard.
- ENV (1995), "Eurocode 3: Design of Steel Structures - Part 1-2: Fire Resistance", 1993-1-2 European Prestandard.
- Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", J. Am. Concrete Inst., 82, 310-323.
- Harmathy, T.Z. (1983), "Properties of building materials at elevated temperatures", DRP Paper No. 1080 of the Division of Building Research.
- Harmathy, T.Z. (1988), "Properties of building materials in SFPE Handbook of fire protection engineering", Ed. DiNenno, P.J. et. al, Section 1, Chapter 26, 378-391.
- History for Oakland, CA on Sunday, April 29 (2007), The weather underground, Inc. http://www.wunderground.com/history/airport/KOAK/2007/4/29/DailyHistory.html
- Keller, T., Tracy, C. and Hugi, E. (2006), "Fire endurance of loaded and liquid-cooled GFRP slabs for construction", Compos. Part A-Appl. S., 37(7), 1055-1067. https://doi.org/10.1016/j.compositesa.2005.03.030
- Kodur, V.K.R. and Sultan, M.A. (2003), "Effect of temperature on thermal properties of high-strength concrete", J. Mater. Civil Eng., 15(2), 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
- Marzouk, H. and Chen, Z.W. (1995), "Fracture energy and tension properties of high-strength concrete", J. Mater. Civil Eng., 7, 108-116. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:2(108)
- Maze Damage & Repair Photographs, California Department of Transportation District 4 (2007), http:// www.dot.ca.gov/dist4/mazedamage/mazephotos.htm
- Mendes, P.A., Valente, J.C. and Branco, F.A. (2000), "Simulation of ship fire under Vasco da Gama Bridge", ACI Struct. J., 97(2), 285-290.
- Moorty, S. and Roeder, C.W. (1992), "Temperature-dependent bridge movements", J. Struct. Eng., 118(4), 1090- 1105. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:4(1090)
- Neves, I.C., Branco, F.A. and Valente, J.C. (1997), "Effects of formwork fires in bridge construction" Concrete Int., 19(3), 41-46.
- Outinen, J. and Makelainen, P. (2004), "Mechanical properties of structural steel at elevated temperatures and after cooling down", Fire Mater., 28, 237-251. https://doi.org/10.1002/fam.849
- Shin, M., Kim, H.S. and Shin, Y.S. (2003), "Structural behavior of flexural member with normal & high strength concrete under high temperature", Proceedings of Korea Institute for Structural Maintenance Inspection, 7(2), 157-160.
- Silveira, A.P., Branco, F.A. and Castanheta, M. (2000), "Statistical analysis of thermal actions for concrete bridge design", Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 10(1), 33-38.
- Tanker Fire Destroys Part of MacArthur Maze 2 Freeways Closed Near Bay Bridge, San Francisco Chronicle (2007), http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2007/04/29/BAGVOPHQU46.DTL
피인용 문헌
- Investigations on Structural Safety of Office Room Based on Fire Simulation and Transient Heat Transfer Analysis vol.02, pp.03, 2014, https://doi.org/10.4236/wjet.2014.23B004
- Effect of Wall Thickness on Thermal Behaviors of RC Walls Under Fire Conditions vol.10, pp.S3, 2016, https://doi.org/10.1007/s40069-016-0164-5
- Analysis of a damaged industrial hall subjected to the effects of fire vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.757
- Experimental and Analytical Studies for the Effect of Embedded Pipe Directions on Flexural Behaviors of Hollow Core Slab with PCM vol.30, pp.3, 2014, https://doi.org/10.5659/JAIK_SC.2014.30.3.065
- Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed to fire 2018, https://doi.org/10.1007/s11709-018-0452-z
- Effect of Loading and Beam Sizes on the Structural Behaviors of Reinforced Concrete Beams Under and After Fire vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0280-5
- Condition assessment of fire affected reinforced concrete shear wall building - A case study vol.4, pp.2, 2016, https://doi.org/10.12989/acc.2016.4.2.089
- Review of the fire risk, hazard, and thermomechanical response of bridges in fire vol.47, pp.4, 2012, https://doi.org/10.1139/cjce-2018-0767
- Posttensioned Concrete Bridge Beams Exposed to Hydrocarbon Fire vol.146, pp.10, 2012, https://doi.org/10.1061/(asce)st.1943-541x.0002791
- Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study vol.77, pp.5, 2012, https://doi.org/10.12989/sem.2021.77.5.673
- Case Study on Prediction of Temperature in Compartment Considering Fire Conditions in Buildings vol.21, pp.4, 2012, https://doi.org/10.9798/kosham.2021.21.4.61
- Coupled CFD-FEM Simulation Methodology for Fire-Exposed Bridges vol.26, pp.10, 2012, https://doi.org/10.1061/(asce)be.1943-5592.0001770
- Bridge fires in the 21st century: A literature review vol.126, pp.None, 2021, https://doi.org/10.1016/j.firesaf.2021.103487