References
- Akbas, S.D. and Kocatürk, T. (2011), "Post-buckling analysis of a simply supported beam under uniform thermal loading", Sci. Res. Essay., 6(4), 1135-1142.
- Akbas, S.D. (2011), "Thermal post-buckling analysis of functionally graded beams", PhD Thesis Term Report on May and November, Institute of Science at Yildiz Technical University ( stanbul).
- Akbas, S.D. and Kocaturk, T. (2011), "Eksenel Dogrultuda Fonksiyonel derecelendirilmi Timoshenko kirisinin sicaklik etkisi alt ndaki burkulma sonrasi davranisinin incelenmesi (Post-buckling behavior of axially functionally graded Timoshenko beam under the influence of temperature)", XVII. Turkish National Mechanic Congress, Elazig, Turkey, In Print (in Turkish).
- Alibeigloo, A. (2010), "Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers", Compos. Struct., 92, 1535-1543. https://doi.org/10.1016/j.compstruct.2009.10.030
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- Bhangale, R.K. and Ganesan, N. (2006), "Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core", J. Sound Vib., 295, 294-316. https://doi.org/10.1016/j.jsv.2006.01.026
- Carpinteri, A. and Paggi, M. (2008), "Thermo-elastic mismatch in nonhomogeneous beams", J. Eng. Mat., 61(2-4), 371-384. https://doi.org/10.1007/s10665-008-9212-8
- Ching, H.K. and Yen, S.C. (2005), "Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads", Composites: Part B, 36, 223-240. https://doi.org/10.1016/j.compositesb.2004.09.007
- Ching, H.K. and Yen, S.C. (2005), "Transient thermoelastic deformations of 2-D functionally graded beams under nonuniformly convective heat supply", Compos. Struct., 73, 381-393.
- Farid, M., Zahedinejad, P. and Malekzadeh, P. (2010), "Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method", Struct. Eng. Mech., 31(1), 2-13.
- Felippa, C.A., Retrieved May (2011), "Notes on nonlinear finite element methods", http://www.colorado.edu/ engineering/cas/courses.d/NFEM.d/NFEM.Ch09.d/NFEM.Ch09.pdf
- Inan, O., Dag, S. and Erdogan, F. (2005), "Three dimensional fracture analysis of FGM coatings", Mater. Sci. Forum, 492-493, 373-378.
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Therm. Stresses, 31, 759-787. https://doi.org/10.1080/01495730802194292
- Ke, L.L., Yang, J. and Kitipornchai, S. (2009), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening", Compos. Struct., 90(2), 152-160. https://doi.org/10.1016/j.compstruct.2009.03.003
- Khdeir, A.A. (2001), "Thermal buclding of cross-ply laminated composite beams", Acta Mechanica, 149, 201-213. https://doi.org/10.1007/BF01261672
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams, Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
- Kocatürk, T., im ek M. and Akba , .D. (2011), "Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material", Sci. Eng. Compos. Mater., 18, 21-34.
- Kocatürk, T. and Akba , S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
- Librescua, L., Oha, S.Y. and Songb, O. (2005), "Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability", J. Therm. Stresses, 28, 649-712. https://doi.org/10.1080/01495730590934038
- Li, S.R., Zhang, J.H. and Zhao, Y.G. (2006), "Thermal Post-Buckling of functionally graded material Timoshenko beams", Appl. Math. Mech., 26(6), 803-810.
- Li, S.R., Su, H.D. and Cheng, C.J. (2009), "Free vibration of functionally graded material beams with surfacebonded piezoelectric layers in thermal environment", Appl. Math. Mech., 30(8), 969-982. https://doi.org/10.1007/s10483-009-0803-7
- Lim, C.W., Yang, Q. and Lu, C.F. (2009), "Two-dimensional elasticity solutions for temperature dependent inplane vibration of FGM circular arches", Compos. Struct., 90, 323-329. https://doi.org/10.1016/j.compstruct.2009.03.014
- Lu, C., Chen, W. and Zhong, Z. (2006), Two-dimensional thermoelasticity solution for functionally graded thick beams", Science in China Series G: Physics, Mechanics & Astronomy 49(4), 451-460. https://doi.org/10.1007/s11433-006-0451-2
- Malekzadeh, P., Haghighi, M.R.G. and Atashi, M.M. (2010), "Out-of-plane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct. 92(2), 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040
- Mohammadia, M. and Drydena, J.R. (2008), "Thermal stress in a nonhomogeneous curved beam", J. Therm. Stresses, 31(7), 587-598. https://doi.org/10.1080/01495730801978471
- Na, K.S. and Kim, J.H. (2006), "Thermal postbuckling investigations of functionally graded plates using 3-D finite element method", Finite Elem. Analy. Des., 42(8-9), 749-756. https://doi.org/10.1016/j.finel.2005.11.005
- Nirmula, K., Upadhyay, P.C., Prucz, J. and Lyons, D. (2006), "Thermo-elastic Stresses in Composite Beams with Functionally Graded Layer", J. Reinf. Plast. Compos., 25(12), 1241-1254. https://doi.org/10.1177/0731684406059787
- Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018
- Rahimi, G.H. and Davoodinik, A.R. (2008), "Thermal behavior analysis of the functionally graded Timoshenko's beam", IUST Int. J. Eng. Sci., 19(5-1), 105-113.
- Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading, International", J. Mech. Mater. Des., 2, 117-128. https://doi.org/10.1007/s10999-005-4446-3
- Reddy, J.N. (2004), An Introduction to Non-linear Finite Element Analysis, Oxford University Press Inc., New York.
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1228-1232. https://doi.org/10.2514/2.1775
- Song, X. and Li, S. (2008), "Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal load", Adv. Mater. Res., 33-37, 699-706. https://doi.org/10.4028/www.scientific.net/AMR.33-37.699
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Composites: Part B, 39, 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Wakashima, K., Hirano, T. and Niino, M. (1990), "Space applications of advanced structural materials", ESA, SP: 303-397.
- Zienkiewichz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Fifth Edition, Volume 2, Solid Mechanics, Butterworth-Heinemann, Oxford.
Cited by
- Stress Analysis of a Functionally Graded Micro/ Nanorotating Disk with Variable Thickness Based on the Strain Gradient Theory vol.08, pp.02, 2016, https://doi.org/10.1142/S1758825116500204
- Elasto-plastic pre- and post-buckling analysis of functionally graded beams under mechanical loading vol.229, pp.2, 2015, https://doi.org/10.1177/1464420713502908
- Large post-buckling behavior of Timoshenko beams under axial compression loads vol.51, pp.6, 2014, https://doi.org/10.12989/sem.2014.51.6.955
- Post-Buckling Analysis of Axially Functionally Graded Three-Dimensional Beams vol.07, pp.03, 2015, https://doi.org/10.1142/S1758825115500477
- Buckling and Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Beam Under Axial Load vol.08, pp.01, 2016, https://doi.org/10.1142/S1758825116500083
- On Post-Buckling Behavior of Edge Cracked Functionally Graded Beams Under Axial Loads vol.15, pp.04, 2015, https://doi.org/10.1142/S0219455414500655
- Post-Buckling Analysis of Functionally Graded Three-Dimensional Beams Under the Influence of Temperature vol.36, pp.12, 2013, https://doi.org/10.1080/01495739.2013.788397
- Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.109
- Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties vol.15, pp.5, 2013, https://doi.org/10.12989/scs.2013.15.5.481
- Hierarchical one-dimensional finite elements for the thermal stress analysis of three-dimensional functionally graded beams vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.06.012
- Post-buckling finite strip analysis of thick functionally graded plates vol.49, pp.5, 2014, https://doi.org/10.12989/sem.2014.49.5.569
- Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material vol.2013, 2013, https://doi.org/10.1155/2013/871815
- Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load vol.127, 2016, https://doi.org/10.1016/j.actaastro.2016.05.030
- Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness vol.19, pp.3, 2016, https://doi.org/10.1016/j.jestch.2016.05.014
- Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material vol.49, pp.6, 2014, https://doi.org/10.12989/sem.2014.49.6.727
- Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- Post-buckling responses of functionally graded beams with porosities vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.579
- Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory vol.63, pp.4, 2012, https://doi.org/10.12989/sem.2017.63.4.471
- Nonlinear static analysis of functionally graded porous beams under thermal effect vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.399
- Post-buckling responses of a laminated composite beam vol.26, pp.6, 2012, https://doi.org/10.12989/scs.2018.26.6.733
- Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2012, https://doi.org/10.12989/sem.2018.66.1.027
- Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2012, https://doi.org/10.12989/scs.2018.27.5.567
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2012, https://doi.org/10.12989/was.2018.27.1.059
- Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
- Hygro-thermal post-buckling analysis of a functionally graded beam vol.8, pp.5, 2019, https://doi.org/10.12989/csm.2019.8.5.459
- Thermo-Mechanical Post Buckling Analysis of Multiwall Carbon Nanotube-Reinforced Composite Laminated Beam under Elastic Foundation vol.6, pp.1, 2012, https://doi.org/10.1515/cls-2019-0018
- Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2012, https://doi.org/10.12989/anr.2019.7.3.191
- Dynamic responses of laminated beams under a moving load in thermal environment vol.35, pp.6, 2012, https://doi.org/10.12989/scs.2020.35.6.729