References
- Aksogan, O., Arslan, H.M. and Choo, B.S. (2003), "Forced vibration analysis of stiffened coupled shear walls using continuous connection method", Eng. Struct., 25, 499-506. https://doi.org/10.1016/S0141-0296(02)00192-X
- Aksogan, O., Bikce, M., Emsen, E. and Arslan, H.M. (2007), "A simplified dynamic analysis of multi bay stiffened coupled shear walls", Adv. Eng. Softw., 38, 552-560. https://doi.org/10.1016/j.advengsoft.2006.08.019
- Basu, A., Nagpal, A.K., Bajaj, R.S. and Guliani, A. (1979), "Dynamic characteristics of coupled shear walls", J. Struct. Eng. ASCE, 105, 1637-1651.
- Bellman, R.E. and Casti, J. (1971), "Differential quadrature and long term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Bellman, R.E., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10, 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
- Bert, C.W., Jang, S.K. and Striz, A.G. (1987), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618.
- Bert, C.W., Wang, Z. and Striz, A.G. (1993), "Differential quadrature for static and free vibration analysis of anisotropic plates", Int. J. Solids Struct., 30(13), 1737-1744. https://doi.org/10.1016/0020-7683(93)90230-5
- Bert, C.W. and Malik, M. (1996a), "Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi- analytical approach", J. Sound Vib., 190(1), 41-63. https://doi.org/10.1006/jsvi.1996.0046
- Bert, C.W. and Malik, M. (1996b), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Bozdogan, K.B., Ozturk, D. and Nuhoglu, A. (2009), "An approximate method for static and dynamic analyses of multi-bay coupled shear walls", Struct. Des. Tall Spec. Build., 18, 1-12. https://doi.org/10.1002/tal.390
- Chaallal, O. (1992), "Finite element model for seismic RC coupled walls having slender coupling beams", J. Struct. Eng. ASCE, 118(10), 2936-2943. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2936)
- Chaallal, O. and Ghamallal, N. (1996), "Seismic response of flexibly supported coupled shear walls", J. Struct. Eng. ASCE, 122(10), 1187-1197. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1187)
- Chaallal, O, Gauthier, D. and Malenfant, P. (1996), "Classification methodology for coupled shear walls", J. Struct. Eng. ASCE, 122(12), 1453-1458. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1453)
- Chai, Y.H. and Chen, Y. (2009), "Reexamination of the vibrational period of coupled shear walls by differential transformation", J. Struct. Eng. ASCE, 135(11), 1330-1339. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000059
- Cheung, Y.K., Hutton, S.G. and Kasemset, C. (1977), "Frequency analysis of coupled shear wall assemblies", Earth. Eng. Struct. D., 5(2), 191-201. https://doi.org/10.1002/eqe.4290050207
- Civalek, O. (2004a), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. and Ülker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Int. J. Struct. Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001
- Civalek, O. (2004b), "Three different type differential quadrature methods (DQM) for linear buckling analysis of uniform elastic columns", J. Yyldyz Technical University, 4(6), 51-58.
- Civalek, O. (2005), "Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of HDQ-FD methods", Int. J. Pres. Vess. Pip., 82(6), 470-479. https://doi.org/10.1016/j.ijpvp.2004.12.003
- Coull, A. and Smith, B.S. (1983), Tall buildings 1. Handbook of structural concrete, Ed. F.K. Kong, R.H. Evans, E. Cohen and F. Roll, Pitman Books Limited, London, England.
- Eftekhari, S.A. and Jafari, A.A. (2011), "A new mixed finite element-differential quadrature formulation for forced vibration of beams carrying moving loads", J. Appl. Mech., 78(1), 011020-1-16. https://doi.org/10.1115/1.4002037
- Ha, H.H. and Tan, T.M.H. (1999), "An efficient analysis of continuum shear wall models", Can. J. Civ. Eng., 26, 425-433. https://doi.org/10.1139/l99-008
- Karami, G. and Malekzadeh, P. (2003), "Application of a new differential quadrature methodology for free vibration analysis of plates", Int. J. Numer. Meth. Eng., 56, 847-867. https://doi.org/10.1002/nme.590
- Kaya, B. (2010), "Solution of advection-diffusion equation using the differential quadrature method", KSCE J. Civ. Eng., 14(1), 69-75. https://doi.org/10.1007/s12205-010-0069-9
- Kim, H.S. and Lee, D.G. (2003), "Analysis of shear wall with openings using super elements", Eng. Struct., 25, 981-991. https://doi.org/10.1016/S0141-0296(03)00041-5
- Kuang, J.S. and Chau, C.K. (1998), "Free vibration of stiffened coupled shear walls", Struct. Des. Tall Build., 7, 135-145. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<135::AID-TAL93>3.0.CO;2-D
- Kwan, A.K.H. (1993), "Mixed finite elements for analysis of coupled shear/core walls", J. Struct. Eng. ASCE, 119(59), 1388-1408. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:5(1388)
- Kwan, A.K.H. (1995), "Equivalence of finite elements and analogous frame modules for shear/core wall analysis", Comp. Struct., 57(2), 193-203. https://doi.org/10.1016/0045-7949(94)00604-2
- Li, G.Q. and Choo, B.S. (1996), "A continous-discrete approach to the free vibration analysis of stiffened pierced walls on flexible foundations", Int. J. Solids Struct., 33(2), 249-263. https://doi.org/10.1016/0020-7683(95)00028-9
- Liew, K.M., Teo, T.M. and Han, J.B. (1999), "Comparative accuracy of DQ and HDQ methods for threedimensional vibration analysis of rectangular plates", Int. J. Num. Meth. Eng., 45, 1831-1848. https://doi.org/10.1002/(SICI)1097-0207(19990830)45:12<1831::AID-NME656>3.0.CO;2-W
- Liew, K.M. and Teo, T.M. (1999), "Three dimensional vibration analysis of rectangular plates based on differential quadrature method", J. Sound Vib., 220(4), 577-599. https://doi.org/10.1006/jsvi.1998.1927
- Liew, K.M., Teo, T.M. and Han, J.B. (2001), "Three dimensional static solutions of rectangular plates by variant differential quadrature method", Int. J. Mech. Sci., 43, 1611-1628. https://doi.org/10.1016/S0020-7403(00)00098-9
- Malekzadeh, P. and Farid, M. (2007), "A DQ large deformation analysis of composite plates on nonlinear elastic foundations", Compos. Struct., 79, 251-260. https://doi.org/10.1016/j.compstruct.2006.01.004
- Potzta, G. and Kollar, L.P. (2003), "Analysis of building structures by replacement sandwich beams", Int. J. Solids Struct., 40, 535-553. https://doi.org/10.1016/S0020-7683(02)00622-4
- Rashed, Y.F. (2000), "Analysis of building shear walls using boundary elements", Eng. An. Bound. Elem., 24, 287-293. https://doi.org/10.1016/S0955-7997(99)00055-7
- Resatoglu, R., Aksogan, O. and Emsen, E. (2010), "Static analysis of laterally arbitrarily loaded non-planar non symmetrical coupled shear walls", Thin Wall. Struct., 48(9), 696-708. https://doi.org/10.1016/j.tws.2010.04.009
- Rosman, R. (1964), "Approximate analysis of shear walls subject to lateral loads", Proc. Am. Concr. Inst., 61(6), 717-734.
- Smith, B.S. (1970), "Modified beam method for analyzing symmetrical shear walls". J. Am. Concr. Inst., 67(2), 977-980.
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible navier-stokes equations", Int. J. Num. Meth. Fluids, 15, 791-798. https://doi.org/10.1002/fld.1650150704
- Shu, C. and Xue, H. (1997), "Explicit computations of weighting coefficients in the harmonic differential quadrature", J. Sound Vib., 204(3), 549-555. https://doi.org/10.1006/jsvi.1996.0894
- Shu, C. (2000), Differential quadrature and its application in engineering, Springer-Verlag London Limited.
- Striz, A.G., Jang, S.K. and Bert, C.W. (1988), "Nonlinear bending analysis of thin circular plates by differential quadrature", Thin Wall. Struct., 6, 51-62. https://doi.org/10.1016/0263-8231(88)90025-0
- Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111, 85-94. https://doi.org/10.1007/BF01187729
- Takabatake, H. (2010), "Two- dimensional rod theory for approximate analysis of building structures", Earthq. Struct., 1(1), 1-19. https://doi.org/10.12989/eas.2010.1.1.001
- Wang, Q. and Wang, L.Y. (2005), "Estimating periods of vibration of buildings with coupled shear wall", J. Struct. Eng. ASCE, 131(12), 1931-1935. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1931)
- Zeidabadi, N.A., Mirtalae, K. and Mobasher, B. (2004), "Optimized use of the outrigger system to stiffen the coupled shear walls in tall buildings", Struct. Des. Tall Spec. Build., 13, 9-27. https://doi.org/10.1002/tal.228
Cited by
- Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory vol.36, pp.7, 2015, https://doi.org/10.1002/pc.23036
- On radially symmetric vibrations of non-uniform annular sandwich plates vol.94, 2015, https://doi.org/10.1016/j.tws.2015.05.009
- Vertical seismic response analysis of straight girder bridges considering effects of support structures vol.8, pp.6, 2015, https://doi.org/10.12989/eas.2015.8.6.1481
- Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect vol.86, 2014, https://doi.org/10.1016/j.commatsci.2014.01.047
- On the use of differential quadrature method in the study of free axisymmetric vibrations of circular sandwich plates of linearly varying thickness vol.22, pp.7, 2016, https://doi.org/10.1177/1077546314544695
- On radially symmetric vibrations of circular sandwich plates of non-uniform thickness vol.99, 2015, https://doi.org/10.1016/j.ijmecsci.2015.04.016
- A modified replacement beam for analyzing building structures with damping systems vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.905
- Dynamic analysis of combined system of framed tube and shear walls by Galerkin method using B-spline functions vol.24, pp.8, 2015, https://doi.org/10.1002/tal.1201
- Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method vol.27, pp.1, 2012, https://doi.org/10.12989/scs.2018.27.1.035
- Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory vol.75, pp.6, 2020, https://doi.org/10.12989/sem.2020.75.6.737