DOI QR코드

DOI QR Code

Differential quadrature method for free vibration analysis of coupled shear walls

  • Bozdogan, K.B. (Department of Civil Engineering, Cumhuriyet University)
  • Received : 2011.01.06
  • Accepted : 2011.11.30
  • Published : 2012.01.10

Abstract

Differential Quadrature Method (DQM) is a powerful method which can be used to solve numerical problems in the analysis of structural and dynamical systems. In this study the governing equation which represents the free vibration of coupled shear walls is solved using the DQM method. A one-dimensional model has been used in this study. At the end of study various examples are presented to verify the accuracy of the method.

Keywords

References

  1. Aksogan, O., Arslan, H.M. and Choo, B.S. (2003), "Forced vibration analysis of stiffened coupled shear walls using continuous connection method", Eng. Struct., 25, 499-506. https://doi.org/10.1016/S0141-0296(02)00192-X
  2. Aksogan, O., Bikce, M., Emsen, E. and Arslan, H.M. (2007), "A simplified dynamic analysis of multi bay stiffened coupled shear walls", Adv. Eng. Softw., 38, 552-560. https://doi.org/10.1016/j.advengsoft.2006.08.019
  3. Basu, A., Nagpal, A.K., Bajaj, R.S. and Guliani, A. (1979), "Dynamic characteristics of coupled shear walls", J. Struct. Eng. ASCE, 105, 1637-1651.
  4. Bellman, R.E. and Casti, J. (1971), "Differential quadrature and long term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
  5. Bellman, R.E., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10, 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
  6. Bert, C.W., Jang, S.K. and Striz, A.G. (1987), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618.
  7. Bert, C.W., Wang, Z. and Striz, A.G. (1993), "Differential quadrature for static and free vibration analysis of anisotropic plates", Int. J. Solids Struct., 30(13), 1737-1744. https://doi.org/10.1016/0020-7683(93)90230-5
  8. Bert, C.W. and Malik, M. (1996a), "Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi- analytical approach", J. Sound Vib., 190(1), 41-63. https://doi.org/10.1006/jsvi.1996.0046
  9. Bert, C.W. and Malik, M. (1996b), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
  10. Bozdogan, K.B., Ozturk, D. and Nuhoglu, A. (2009), "An approximate method for static and dynamic analyses of multi-bay coupled shear walls", Struct. Des. Tall Spec. Build., 18, 1-12. https://doi.org/10.1002/tal.390
  11. Chaallal, O. (1992), "Finite element model for seismic RC coupled walls having slender coupling beams", J. Struct. Eng. ASCE, 118(10), 2936-2943. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2936)
  12. Chaallal, O. and Ghamallal, N. (1996), "Seismic response of flexibly supported coupled shear walls", J. Struct. Eng. ASCE, 122(10), 1187-1197. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1187)
  13. Chaallal, O, Gauthier, D. and Malenfant, P. (1996), "Classification methodology for coupled shear walls", J. Struct. Eng. ASCE, 122(12), 1453-1458. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1453)
  14. Chai, Y.H. and Chen, Y. (2009), "Reexamination of the vibrational period of coupled shear walls by differential transformation", J. Struct. Eng. ASCE, 135(11), 1330-1339. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000059
  15. Cheung, Y.K., Hutton, S.G. and Kasemset, C. (1977), "Frequency analysis of coupled shear wall assemblies", Earth. Eng. Struct. D., 5(2), 191-201. https://doi.org/10.1002/eqe.4290050207
  16. Civalek, O. (2004a), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
  17. Civalek, O. and Ülker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Int. J. Struct. Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001
  18. Civalek, O. (2004b), "Three different type differential quadrature methods (DQM) for linear buckling analysis of uniform elastic columns", J. Yyldyz Technical University, 4(6), 51-58.
  19. Civalek, O. (2005), "Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of HDQ-FD methods", Int. J. Pres. Vess. Pip., 82(6), 470-479. https://doi.org/10.1016/j.ijpvp.2004.12.003
  20. Coull, A. and Smith, B.S. (1983), Tall buildings 1. Handbook of structural concrete, Ed. F.K. Kong, R.H. Evans, E. Cohen and F. Roll, Pitman Books Limited, London, England.
  21. Eftekhari, S.A. and Jafari, A.A. (2011), "A new mixed finite element-differential quadrature formulation for forced vibration of beams carrying moving loads", J. Appl. Mech., 78(1), 011020-1-16. https://doi.org/10.1115/1.4002037
  22. Ha, H.H. and Tan, T.M.H. (1999), "An efficient analysis of continuum shear wall models", Can. J. Civ. Eng., 26, 425-433. https://doi.org/10.1139/l99-008
  23. Karami, G. and Malekzadeh, P. (2003), "Application of a new differential quadrature methodology for free vibration analysis of plates", Int. J. Numer. Meth. Eng., 56, 847-867. https://doi.org/10.1002/nme.590
  24. Kaya, B. (2010), "Solution of advection-diffusion equation using the differential quadrature method", KSCE J. Civ. Eng., 14(1), 69-75. https://doi.org/10.1007/s12205-010-0069-9
  25. Kim, H.S. and Lee, D.G. (2003), "Analysis of shear wall with openings using super elements", Eng. Struct., 25, 981-991. https://doi.org/10.1016/S0141-0296(03)00041-5
  26. Kuang, J.S. and Chau, C.K. (1998), "Free vibration of stiffened coupled shear walls", Struct. Des. Tall Build., 7, 135-145. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<135::AID-TAL93>3.0.CO;2-D
  27. Kwan, A.K.H. (1993), "Mixed finite elements for analysis of coupled shear/core walls", J. Struct. Eng. ASCE, 119(59), 1388-1408. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:5(1388)
  28. Kwan, A.K.H. (1995), "Equivalence of finite elements and analogous frame modules for shear/core wall analysis", Comp. Struct., 57(2), 193-203. https://doi.org/10.1016/0045-7949(94)00604-2
  29. Li, G.Q. and Choo, B.S. (1996), "A continous-discrete approach to the free vibration analysis of stiffened pierced walls on flexible foundations", Int. J. Solids Struct., 33(2), 249-263. https://doi.org/10.1016/0020-7683(95)00028-9
  30. Liew, K.M., Teo, T.M. and Han, J.B. (1999), "Comparative accuracy of DQ and HDQ methods for threedimensional vibration analysis of rectangular plates", Int. J. Num. Meth. Eng., 45, 1831-1848. https://doi.org/10.1002/(SICI)1097-0207(19990830)45:12<1831::AID-NME656>3.0.CO;2-W
  31. Liew, K.M. and Teo, T.M. (1999), "Three dimensional vibration analysis of rectangular plates based on differential quadrature method", J. Sound Vib., 220(4), 577-599. https://doi.org/10.1006/jsvi.1998.1927
  32. Liew, K.M., Teo, T.M. and Han, J.B. (2001), "Three dimensional static solutions of rectangular plates by variant differential quadrature method", Int. J. Mech. Sci., 43, 1611-1628. https://doi.org/10.1016/S0020-7403(00)00098-9
  33. Malekzadeh, P. and Farid, M. (2007), "A DQ large deformation analysis of composite plates on nonlinear elastic foundations", Compos. Struct., 79, 251-260. https://doi.org/10.1016/j.compstruct.2006.01.004
  34. Potzta, G. and Kollar, L.P. (2003), "Analysis of building structures by replacement sandwich beams", Int. J. Solids Struct., 40, 535-553. https://doi.org/10.1016/S0020-7683(02)00622-4
  35. Rashed, Y.F. (2000), "Analysis of building shear walls using boundary elements", Eng. An. Bound. Elem., 24, 287-293. https://doi.org/10.1016/S0955-7997(99)00055-7
  36. Resatoglu, R., Aksogan, O. and Emsen, E. (2010), "Static analysis of laterally arbitrarily loaded non-planar non symmetrical coupled shear walls", Thin Wall. Struct., 48(9), 696-708. https://doi.org/10.1016/j.tws.2010.04.009
  37. Rosman, R. (1964), "Approximate analysis of shear walls subject to lateral loads", Proc. Am. Concr. Inst., 61(6), 717-734.
  38. Smith, B.S. (1970), "Modified beam method for analyzing symmetrical shear walls". J. Am. Concr. Inst., 67(2), 977-980.
  39. Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible navier-stokes equations", Int. J. Num. Meth. Fluids, 15, 791-798. https://doi.org/10.1002/fld.1650150704
  40. Shu, C. and Xue, H. (1997), "Explicit computations of weighting coefficients in the harmonic differential quadrature", J. Sound Vib., 204(3), 549-555. https://doi.org/10.1006/jsvi.1996.0894
  41. Shu, C. (2000), Differential quadrature and its application in engineering, Springer-Verlag London Limited.
  42. Striz, A.G., Jang, S.K. and Bert, C.W. (1988), "Nonlinear bending analysis of thin circular plates by differential quadrature", Thin Wall. Struct., 6, 51-62. https://doi.org/10.1016/0263-8231(88)90025-0
  43. Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111, 85-94. https://doi.org/10.1007/BF01187729
  44. Takabatake, H. (2010), "Two- dimensional rod theory for approximate analysis of building structures", Earthq. Struct., 1(1), 1-19. https://doi.org/10.12989/eas.2010.1.1.001
  45. Wang, Q. and Wang, L.Y. (2005), "Estimating periods of vibration of buildings with coupled shear wall", J. Struct. Eng. ASCE, 131(12), 1931-1935. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1931)
  46. Zeidabadi, N.A., Mirtalae, K. and Mobasher, B. (2004), "Optimized use of the outrigger system to stiffen the coupled shear walls in tall buildings", Struct. Des. Tall Spec. Build., 13, 9-27. https://doi.org/10.1002/tal.228

Cited by

  1. Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory vol.36, pp.7, 2015, https://doi.org/10.1002/pc.23036
  2. On radially symmetric vibrations of non-uniform annular sandwich plates vol.94, 2015, https://doi.org/10.1016/j.tws.2015.05.009
  3. Vertical seismic response analysis of straight girder bridges considering effects of support structures vol.8, pp.6, 2015, https://doi.org/10.12989/eas.2015.8.6.1481
  4. Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect vol.86, 2014, https://doi.org/10.1016/j.commatsci.2014.01.047
  5. On the use of differential quadrature method in the study of free axisymmetric vibrations of circular sandwich plates of linearly varying thickness vol.22, pp.7, 2016, https://doi.org/10.1177/1077546314544695
  6. On radially symmetric vibrations of circular sandwich plates of non-uniform thickness vol.99, 2015, https://doi.org/10.1016/j.ijmecsci.2015.04.016
  7. A modified replacement beam for analyzing building structures with damping systems vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.905
  8. Dynamic analysis of combined system of framed tube and shear walls by Galerkin method using B-spline functions vol.24, pp.8, 2015, https://doi.org/10.1002/tal.1201
  9. Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method vol.27, pp.1, 2012, https://doi.org/10.12989/scs.2018.27.1.035
  10. Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory vol.75, pp.6, 2020, https://doi.org/10.12989/sem.2020.75.6.737