DOI QR코드

DOI QR Code

Nonlinear consolidation of soft clays subjected to cyclic loading - Part I: theory

  • Received : 2011.05.23
  • Accepted : 2012.07.22
  • Published : 2012.12.25

Abstract

In this paper, utilizing void ratio-effective stress and void ratio-permeability relationships, a system of two nonlinear partial differential equations is derived to predict the consolidation characteristics of normally consolidated (NC) and overconsolidated (OC) soft clays subjected to cyclic loading. A developed feature of the coefficient of consolidation containing two key parameters is emerged from the differential equations. Effect of these parameters on the consolidation characteristics of soft clays is analytically discussed. It is shown that the ratios between the slopes of e-$log{\sigma}^{\prime}$ and e-log k lines in the NC and OC states play a major role in the consolidation process. In the companion paper, the critical assumptions made in the analytical discussion are experimentally verified and a numerical study is carried out in order to examine the proposed theory.

Keywords

References

  1. Abbasi, N., Rahimi, H., Javadi, A.A. and Fakher, A. (2007), "Finite difference approach for consolidation with variable compressibility and permeability", Comput. Geotech., 34(1), 41-52. https://doi.org/10.1016/j.compgeo.2006.09.003
  2. Alonso, E.E. and Krizek, R.J. (1974), "Randomness of settlement rate under stochastic load, J. Eng. Mech. Div. -ASCE, 100(6), 1211-1226.
  3. Baligh, M.M. and Levadoux, J.N. (1978), "Consolidation theory of cyclic loading", J. Geotech. Geoenviron. Eng. - ASCE, 104(4), 415-431.
  4. Battaglio, M., Bonzani, I. and Campolo, D. (2005), "Nonlinear consolidation models of clay with time dependant drainage", Math. Comput. Modell., 42(5-6), 613-620. https://doi.org/10.1016/j.mcm.2004.06.024
  5. Battaglioa, M., Bellomob, N., Bonzani, I. and Lancellottaa, R. (2003), "Non-linear consolidation models of clay which change type", Int. J. Non Linear Mech., 38(4), 493-500. https://doi.org/10.1016/S0020-7462(01)00074-9
  6. Cai, Y.-Q., Geng, X.-Y. and Xu, C.-J. (2007), "Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings", Comput. Geotech., 34(1), 31-40. https://doi.org/10.1016/j.compgeo.2006.08.008
  7. Carrier, W.D. (2003), "Goodbye, Hazen; Hello, Kozeny-Carman", J. Geotech. Geoenviron. Eng. - ASCE, 129(11), 1054-1056. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054)
  8. Conte, E. and Troncone, A. (2006), "One-dimensional consolidation under general time-dependent loading", Can. Geotech. J., 43(11), 1107-1116. https://doi.org/10.1139/t06-064
  9. Conte, E. and Troncone, A. (2007), "Nonlinear consolidation of thin layers subjected to time-dependent loading", Can. Geotech. J., 44(6), 717-725. https://doi.org/10.1139/t07-015
  10. Davis, E.H. and Raymond, G.P. (1965), "A non-linear theory of consolidation", Geotechnique, 15(2), 161-173. https://doi.org/10.1680/geot.1965.15.2.161
  11. Favaretti, M. and Mazzucato, A. (1994), "Settlements of a silo subjected to cyclic loading", Proceedings of settlement ASCE, Reston.
  12. Fox, P.J., Nicola, M.D. and Quigley, D.W. (2003), "Piecewise-Linear Model for Large Strain Radial Consolidation", J. Geotech. Geoenviron. Eng. - ASCE, 129(10), 940-950. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(940)
  13. Lekha, K.R., Krishnaswamy, N.R. and Basak, P. (2003), "Consolidation of clays for variable permeability and compressibility", J. Geotech. Geoenviron. Eng. - ASCE, 129(11), 1001-1009. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1001)
  14. Mesri, Gh. and Rokhsar, A. (1974), "Theory of consolidation for clays", J. Geotech. Eng. - ASCE, 100, 889-904.
  15. Ouria, A. and Toufigh, M.M. (2010), "Prediction of Land Subsidence Under Cyclic Pumping Based on Laboratory and Numerical Simulations", J. Geotech. Geolog. Eng., 28(2), 165-175. https://doi.org/10.1007/s10706-009-9289-5
  16. Rahal, M.A. and Vuez, A.R. (1998), "Analysis of settlement and pore pressure induced by cyclic loading of silo", J. Geotech. Geoenviron. Eng. - ASCE, 124(12), 1208-1210. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1208)
  17. Schiffman, R.L. (1958), "Consolidation of soil under time-dependent loading and varying permeability", Proceeding of Highway Research Board, Washington, 37, 584-617.
  18. Terzaghi, K., Peck, R.B. and Mesri, Gh. (1996), Soil mechanics in engineering practice, 3rd Ed., John Wiley, New York, NY.
  19. Toufigh, M.M. and Ouria, A. (2009), "Consolidation of inelastic clays under rectangular cyclic loading", Soil Dyn. Earthquake Eng., 29(2), 356-363. https://doi.org/10.1016/j.soildyn.2008.03.006
  20. Xie, K., Tian, Qi. and Dong, Y. (2006), "Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading", J. Zh. Univ. Sci., 7(8), 1358-1364. https://doi.org/10.1631/jzus.2006.A1358
  21. Xie, K., Wen, J. and Xia, J. (2005), "Solution to 1-D consolidation of non-homogeneous soft clay", J. Zh. Univ. Sci., 6(1), Suppl. I, 29-34. https://doi.org/10.1631/jzus.AS0029
  22. Yazdani, H. (2008), "Consolidation differential equation solution under cyclic loading", M.Sc. Thesis, Kerman University, Iran.
  23. Yazdani, H., Toufigh, M.M. and Mas'oodzade A. (2010), "Nonlinear analysis of land subsidence due to groundwater level oscillation by a finite difference method", Proceeding of 8th International Symposium on Land Subsidence, EISOLS, Queretaro, Mexico.
  24. Yildirim, H. and Ersan, H. (2007), "Settlements under consecutive series of cyclic loading", Soil Dyn. Earthquake Eng., 27(6), 577-585. https://doi.org/10.1016/j.soildyn.2006.10.007
  25. Zhu, G. and Yin, J.H. (1999), "Consolidation of double soil layers under depth-dependent ramp load", Geotechnique, 49, 415-421. https://doi.org/10.1680/geot.1999.49.3.415
  26. Zhuang, Y., Xie, K. and Li, X. (2005), "Nonlinear analysis of consolidation with variable compressibility and permeability", J. Zh. Univ. Sci., 6(3), 181-187.

Cited by

  1. An experimental investigation of the consolidation process under triangular cyclic loading vol.173, pp.2, 2012, https://doi.org/10.1680/jgeen.18.00261
  2. Finite Element Study on Calculation of Nonlinear Soil Consolidation Using Compression and Recompression Indexes vol.10, pp.14, 2020, https://doi.org/10.3390/app10144737
  3. A generalized consolidation model under cyclic loading vol.14, pp.5, 2012, https://doi.org/10.1080/19386362.2019.1701219
  4. An analytical model for radial consolidation prediction under cyclic loading vol.26, pp.4, 2021, https://doi.org/10.12989/gae.2021.26.4.333
  5. A similarity solution for spherical cavity drained expansion in overconsolidated soils considering large deformation vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.427