DOI QR코드

DOI QR Code

무세포 단백질 합성법을 이용한 활성형 SARS-3CL protease의 발현

Expression of SARS-3CL Protease in a Cell-Free Protein Synthesis System

  • 박선주 (부경대학교 화학과) ;
  • 김용태 (군산대학교 식품생명공학과)
  • Park, Sun-Joo (Department of Chemistry, Pukyong National University) ;
  • Kim, Yong-Tae (Department of Food Science and Technology, Kunsan National University)
  • 투고 : 2012.02.28
  • 심사 : 2012.04.16
  • 발행 : 2012.04.30

초록

사스(Severe acute respiratory syndrome, SARS)는 사람의 신종 폐렴인 중증 급성 호흡기 질환으로 신종 코로나바이러스, SARS-CoV에 의해 유발된다. 3CL protease는 SARS-CoV의 복제, 전사 및 단백질 합성을 조절하는 복제효소 복합단백질의 프로세싱에 결정적인 역할을 담당하는 중요한 효소이다. 따라서, 이 효소를 저해함으로써 SARS-CoV의 증식을 억제하고 사스의 증폭 및 확산을 막을 수 있다. SARS-3CL protease의 활성 저해물질의 탐색은 사스의 치료제 개발에 중요한 목표 중의 하나로 인식되고 있으며 이를 위해서는 활성형 SARS-3CL protease의 대량 생산이 필요하다. 본 연구에서는 활성형 SARS-3CL protease를 대량 생산하기 위하여 여러 가지 발현 벡터 및 단백질 발현 방법 등을 검토하였다. 그 결과, pET29a/3CLP 발현 벡터를 이용한 무세포 단백질 합성법이 SARS-3CL protease 생산에 최적 조건인 것으로 확인되었다. 또한 발현된 효소를 완전히 정제하여 그 특성을 분석한 결과, 본 효소는 무세포 단백질 합성계에서 전구체로 합성됨과 동시에 자가분해됨으로써 모든 단백질이 활성형인 성숙체 단백질로 전환되어 간단히 활성형 SARS-3CL protease 효소를 생산할 수 있음을 확인하였다.

Severe acute respiratory syndrome (SARS) is a severe respiratory infectious disease caused by a novel human coronavirus, SARS-CoV. The 3CL protease is a key enzyme in the proteolytic processing of replicase polyprotein precursors, pp1a and pp1ab, which mediate all the functions required for viral genomic replication and transcription. Therefore, this enzyme is a target for the development of chemotherapeutic agents against SARS. A large quantity of active SARS-3CL protease is required for development of anti-SARS agents. Here we have constructed overexpression vector for the production of the SARS-3CL protease. The gene encoding SARS-3CL protease was amplified using polymerase chain reaction and cloned into the pET29a expression vector, resulting in pET29a/SARS-3CLP. Recombinant SARS-3CL protease was successfully synthesized by the dialysis mode of the cell-free protein expression system, and purified by three-step fast protein liquid chromatography using HighQ and MonoP column chromatographies and Sephacryl S-300 gel filtration. In addition, the produced SARS-3CL protease was found to be an active mature form. This study provides efficient methods not only for the development of anti-SARS materials from natural sources, but also for the study of basic properties of the SARS-3CL protease.

키워드

참고문헌

  1. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. and Hilgenfeld, R. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763-1767. https://doi.org/10.1126/science.1085658
  2. Blanchard, J. E., Elowe, N. H., Huitema, C., Fortin, P. D., Cechetto, J. D., Eltis, L. D. and Brown, E. D. 2004. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol. 11, 1445-1453. https://doi.org/10.1016/j.chembiol.2004.08.011
  3. Chou, K. C., Wei, D. Q. and Zhong, W. Z. 2003. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun. 308, 148-151. https://doi.org/10.1016/S0006-291X(03)01342-1
  4. Donnelly, C. A., Ghani, A. C., Leung, G. M., Hedley, A. J., Fraser, C., Riley, S., Abu-Raddad, L. J., Ho, L. M., Thach, T. Q., Chau, P., Chan, K. P., Lam, T. H., Tse, L. Y., Tsang, T., Liu, S. H., Kong, J. H., Lau, E. M., Ferguson, N. M. and Anderson, R. M. 2003. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361, 1761-1766. https://doi.org/10.1016/S0140-6736(03)13410-1
  5. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., Berger, A., Burguiere, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Müller, S., Rickerts, V., Stürmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H. and Doerr, H. W. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976. https://doi.org/10.1056/NEJMoa030747
  6. Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J. and Lai, L. 2004. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem. 279, 1637-1642. https://doi.org/10.1074/jbc.M310875200
  7. Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K. and Osterhaus, A. D. 2003. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240. https://doi.org/10.1038/423240a
  8. Kao, R. Y., Tsui, W. H., Lee, T. S., Tanner, J. A., Watt, R. M., Huang, J. D., Hu, L., Chen, G., Chen, Z., Zhang, L., He, T., Chan, K. H., Tse, H., To, A. P., Ng, L. W., Wong, B. C., Tsoi, H. W., Yang, D., Ho, D. D. and Yuen, K. Y. 2004. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol. 11, 1293-1299. https://doi.org/10.1016/j.chembiol.2004.07.013
  9. Kathryn, V. H. 2003. SARS-associated coronavirus. N. Engl. J. Med. 348, 1948-1951. https://doi.org/10.1056/NEJMp030078
  10. Kigawa, T., Yabuki, T., Matsuda, N., Matsuda, T., Nakajima, R., Tanaka, A. and Yokoyama, S. 2004. Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J. Struct. Funct. Genomics 5, 63-68. https://doi.org/10.1023/B:JSFG.0000029204.57846.7d
  11. Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S. 1999. Cell-free production and stable-isotope labeling of milligram quantities of protein. FEBS Lett. 442, 15-19. https://doi.org/10.1016/S0014-5793(98)01620-2
  12. Krokhin, O., Li, Y., Andonov, A., Feldmann, H., Flick, R., Jones, S., Stroeher, U., Bastien, N., Dasuri, K. V., Cheng, K., Simonsen, J. N., Perreault, H., Wilkins, J., Ens, W., Plummer, F. and Standing, K. G. 2003. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol. Cell Proteomics 2, 346-356.
  13. Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J. and Anderson L. J.; SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966. https://doi.org/10.1056/NEJMoa030781
  14. Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., Ahuja, A., Yung, M. Y., Leung, C. B., To, L. F., Lui, S. F., Szeto, C. C., Chung, S. and Sung, J. J. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986-1994. https://doi.org/10.1056/NEJMoa030685
  15. Liu, Z., Huang, C., Fan, K., Wei, P., Chen, H., Liu, S., Pei, J., Shi, L., Li, B., Yang, K., Liu, Y. and Lai, L. 2005. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J. Chem. Inf. Model. 45, 10-17. https://doi.org/10.1021/ci049809b
  16. Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404. https://doi.org/10.1126/science.1085953
  17. Myint, S. H. 1995. Human coronavirus infections, pp. 389-401, In Siddell S. G. (eds.), The coronaviridae. Plenum Press.
  18. Peiris, J. S., Yuen, K. Y., Osterhaus, A. D. and Stöhr, K. 2003. The severe acute respiratory syndrome. N. Engl. J. Med. 349, 2431-2441. https://doi.org/10.1056/NEJMra032498
  19. Ruan, Y. J., Wei, C. L., Ee, A. L., Vega, V. B., Thoreau, H., Su, S. T., Chia, J. M., Ng, P., Chiu, K. P., Lim, L., Zhang, T., Peng, C. K., Lin, E. O., Lee, N. M., Yee, S. L., Ng, L. F., Chee, R. E., Stanton, L. W., Long, P. M. and Liu, E. T. 2003. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361, 1779-1785. https://doi.org/10.1016/S0140-6736(03)13414-9
  20. Seki, E., Matsuda, N., Yokoyama, S. and Kigawa, T. 2008. Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation. Anal. Biochem. 377, 156-161. https://doi.org/10.1016/j.ab.2008.03.001
  21. Thiel, V., Herold, J., Schelle, B. and Siddell, S. G. 2001. Viral replicase gene products suffice for coronavirus discontinuous transcription. J. Virol. 75, 6676-6681. https://doi.org/10.1128/JVI.75.14.6676-6681.2001
  22. Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E. and Ziebuhr, J. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305-2315. https://doi.org/10.1099/vir.0.19424-0
  23. Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S., Hsu, H. H., Huang, H. C., Wu, D., Brik, A., Liang, F. S., Liu, R. S., Fang, J. M., Chen, S. T., Liang, P. H. and Wong, C. H. 2004. Small molecules targeting severe acute respiratory sundrome human coronavirus. Proc. Natl. Acad. Sci. USA 101, 10012-10017. https://doi.org/10.1073/pnas.0403596101
  24. Xiong, B., Gui, C. S., Xu, X. Y., Luo, C., Chen, J., Luo, H. B., Chen, L. L., Li, G. W., Sun, T., Yu, C. Y., Yue, L. D., Duan, W. H., Shen, J. K., Qin, L., Shi, T. L., Li, Y. X., Chen, K. X., Luo, X. M., Shen, X., Shen, J. H. and Jiang, H. L. 2003. A 3D model of SARS-CoV 3CL proteinase and 54 inhibitors design by virtual screening. Acta Pharmacol. Sin. 24, 497-504.
  25. Zhang, X. W., Yap, Y. L. and Altmeyer, R. M. 2005. Generation of predictive pharmacophore model for SARS-coronavirus main proteinase. Eur. J. Med. Chem. 40, 57-62. https://doi.org/10.1016/j.ejmech.2004.09.013