References
-
Alrenbuchner, J. 1993. A new
${\lambda}RES$ vector with a built-in Tn 1721-encoded excision system. Gene 123, 63-68. https://doi.org/10.1016/0378-1119(93)90540-J - An, J. M., Kim, Y. K., Lim, W. J., Hong, S. Y., An, C. L., Shin, E. C., Cho, K. M., Choi, B. R., Kang, J. M., Lee, S. M., Kim, H. and Yun, H. D. 2005. Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion. Enzyme Microb. Technol. 36, 989-995. https://doi.org/10.1016/j.enzmictec.2005.01.030
- Birsan, C. P., Johnson, M., Joshi, A., MacLeod, L., McIntosh, V., Menem, M., Nitz, D. R., Rose, D., Tull, W. W. Wakarchuck, Q. Wang, R. A. J. Warren, White, A. and Withers, S. G. 1998. Mechanisms of cellulases and xylanases. Biochem. Soc. Trans. 26, 156-160.
-
Cho, S. J. and Yun, H. D. 2005. Cloning of
${\alpha}$ -amylase gene from unculturable bacterium using cow rumen metagenome. J. Life Sci. 15, 1013-1021. https://doi.org/10.5352/JLS.2005.15.6.1013 - Cho, K. M., Shin, E. C, Lim, W. J., Hong, S. Y., Choi, B. R., Kang, J. M., Lee, S. M., Kim, Y. H., Cho, S. J., Kim, H. and Yun, H. D. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16, 92-101.
- Daniel, R. 2004. The soil metagenome-a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15, 199-204. https://doi.org/10.1016/j.copbio.2004.04.005
- Ferrer, M., Golyshina, O. V., Chernikova, T. N., Khachane, A. N., Reyes-Duarte, D., Martins Dos Santos, V. A. P., Strompl, C., Elborough, K., Jarvis, G., Neef, A., Yakimov, M. M., Timmis, K. N. and Golyshin, P. N. 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7, 1996-2010. https://doi.org/10.1111/j.1462-2920.2005.00920.x
-
Fields, M. W., Russell, J. B. and Wilson, D. B. 1998. The role of ruminal carboxymethyl cellulases in the degradation of
${\beta}$ -glucans from cereal grain. FEMS Microbiol. Ecol. 27, 261-268. - Henrissat, B., Teeri, T. T. and Warren, R. A. J. 1998. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425, 352-354. https://doi.org/10.1016/S0014-5793(98)00265-8
- Hess, M., Sczyrba, A., Egan, R., Kim, H. T., Chokhawala, W., Schroth, S. Luo, G., Clark, D. S., Chen, F., Zhang, T., Mackie, R. I., Pennacchio, L. A., Tringe, S. G., Visel, A., Woyke, T., Wang, Z. and Rubin, E. M. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463-467. https://doi.org/10.1126/science.1200387
- Hristov, A. N., McAllister, T. A. and Cheng, K. J. 1998. Effect of dietary or abomasal supplementation of exogenous polysaccharide- degrading enzymes on rumen fermentation and nutrient digestibility. J. Anim. Sci. 76, 3146-3156.
- Hristov, A. N., McAllister, T. A. and Cheng, K. J. 1998. Stability of exogenous polysaccharide-degrading enzymes in the rumen. Anim. Feed. Sci. Technol. 76, 161-168. https://doi.org/10.1016/S0377-8401(98)00217-X
- Hungate, R. E. 1966. The rumen and its microbe. Academic Press, Inc., New York.
- Islam, S. A., Kim, M. K., Math, R. K., Reddy, S. R., Kim, E. J., Kim, J., Kim, H. and Yun, H. D. 2010. Cloning and characterization of a novel carboxylesterase gene from cow rumen metagenomic library. J. Life Sci. 20, 1306-1313. https://doi.org/10.5352/JLS.2010.20.9.1306
- Kudo, H., Cheng, K. J. and Costerton, J. W. 1987. Electron microscopic study of the methyl cellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 33, 267-272. https://doi.org/10.1139/m87-045
- Kuriki, R., Okada, S. and Imanaka, T. 1988. New type of pullulanase from Bacillus strearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J. Bacteriol. 170, 1554-1559.
- Lam, T. B. T., Iiyama, K. and Stone, B. A. 1990. Primary and secondary walls of grasses and other forage plants: taxonomic and structural considerations. In Akin D. E., Ljungdahl, L. G., Wilson, J. R. and Harris, P. J. (eds.), Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 43-69, Elsevier Science Publishers, London.
- Lee, R. L., Paul, J. W., Willem, H. Z. and Isak, S. P. 2002. Microbial cellulose utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
-
Levy, I., Shani, Z. and Shoseyov, O. 2002. Modification of polysaccharides and plant cell wall by endo-1,4-
${\beta}$ -glucanase and cellulose-binding domains. Biomol. Eng. 19, 17-30. https://doi.org/10.1016/S1389-0344(02)00007-2 - Lim, W. J., Park, S. R., Cho, S. J., Kim, M. K., Ryu, S. K., Hong, S. Y., Seo, W. T., Kim, H. and Yun, H. D. 2001. Cloning and characterization of an intracellular isoamylase gene from Pectobacterium chrysanthemi PY35. Biochem. Biophys. Res. Commun. 287, 348-354. https://doi.org/10.1006/bbrc.2001.5594
- Lorenz, P. and Schleper, C. 2002. Metagenome-a challenging source of enzyme discovery. J. Mol. Catal. B. 20, 13-19. https://doi.org/10.1016/S1381-1177(02)00147-9
- McNeil, M., Darvill, A. G., Fry, S. C. and Albersheim, P. 1984. Structure and function of the primary cell wall of plants. Ann. Rev. Biochem. 53, 625-663. https://doi.org/10.1146/annurev.bi.53.070184.003205
- Miron, J., Ben-Ghedalia, D. and Morrison, M. 2001. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84, 1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
- Mittendorf, V. and Thomson, J. A. 1993. Cloning of an endo-(1, 4)-beta-glucanase gene, celA, from the rumen bacterium Clostridium sp. (C. longisporum) and characterization of its product, CelA, in Escherichia coli. J. Gen. Microbiol. 139, 3233-3242. https://doi.org/10.1099/00221287-139-12-3233
- Park, S. R., Kim, M. K., Kim, J. O., Cho, S. J., Cho, Y. U. and Yun, H. D. 2000. Cloning and sequencing of cel5Z gene from Erwinia chrysanthemi PY35. Mol. Cells 10, 269-274.
- Poole, D. M., Hazlewood, G. P., Laurie, J. I., Barker, P. J. and Gilbert, H. J. 1990. Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223, 217-223.
- Sambrook, J. and Russell, D. W. 2001. Molecular cloning. A Laboratory Manual, 3th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Satoshi, K. and Yasuo, K. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204, 361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
- Schloos, P. D. and Handelsman, J. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14, 303-310. https://doi.org/10.1016/S0958-1669(03)00067-3
- Streit, W. R., Daniel, R. and Jaeger, K. E. 2004. Prospecting for biocatalysts and drugs in the genomes for noncultured microorganisms. Curr. Opin. Biotechnol. 15, 285-290. https://doi.org/10.1016/j.copbio.2004.05.006
- Teather, R. and Wood, P. J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 770-780.
- Vazquez-Laslop, N., Lee, J., Hu, R. and Neyfakh, A. A. 2001. Molecular seive mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bacterili. 183, 2399-2404. https://doi.org/10.1128/JB.183.8.2399-2404.2001
- Wang, F., Li, F., Chen, G. and Liu, W. 2009. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol. Res. 164, 650-657. https://doi.org/10.1016/j.micres.2008.12.002
- Weimer, P. J., Waghorn, G. C., Odt, O. L. and Mertens, D. R. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82, 122-134. https://doi.org/10.3168/jds.S0022-0302(99)75216-1
Cited by
- Cloning and characterization of thermo-alkalistable and surfactant stable endoglucanase from Puga hot spring metagenome of Ladakh (J&K) vol.103, 2017, https://doi.org/10.1016/j.ijbiomac.2017.05.113