DOI QR코드

DOI QR Code

Heat and Flow Analysis in the HVAC Impeller for Mid-Size Car

중형차 HVAC 임펠러 내의 열유동 해석

  • Lee, Dong-Ryul (School of Mechanical and Automotive Engineering, Catholic University of Daegu)
  • 이동렬 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2012.01.16
  • Accepted : 2012.04.12
  • Published : 2012.04.30

Abstract

In this research, various cases of centrifugal impeller for HVAC system have been numerically analyzed by changing center angle of blades and length of outlet. Commercial CFD code, FLUENT has been used to calculate velocity, pressure, turbulence intensity, and temperature that can lead numerous results. Regardless of warming up, when the heater power level was increased, the temperature inside surrounding impeller also increased due to flowing outer air, but the temperature decreased because of flowing inner air. Consequently, the variation of central angle of blades and length of outlet led difference of velocity and flow rate which can reduce $CO_2$ in gas emission.

본 연구는 HVAC 시스템의 성능 개선을 위해 원심 임펠러의 블레이드의 중심각, 토출구의 길이와 같은 형상을 변화시켜 수치적으로 해석하였다. 임펠러 내의 속도장, 압력장, 난류 강도, 온도장을 계산하기 위하여 상용 CFD 코드인 FLUENT를 사용하였다. 시스템의 워밍업에 상관없이 히터 파워 레벨이 증가하면 임펠러 내 주위의 온도는 외기 투입시 온도가 증가하였지만 내기 순환 시에는 온도가 오히려 감소하였다. 결과적으로 성능 개선을 통한 $CO_2$ 감소는 블레이드 중심각 및 토출구 길이의 변화를 통한 유속 및 유량의 변화를 통해 이룰 수 있었다.

Keywords

References

  1. Seong, S., Lee, J., Pak, E., "Numerical Study of Flow through Centrifugal Compressor Impeller" The Society of Air-Conditioning and Refrigerating Engineers of Korea, Winter Conference, pp.257-262, 1996.
  2. Shim, C., Hong, S., Kang, S. "Flow Evaluations of Centrifugal Pump Impeller", The Journal of Fluid Machinery, R&D Conference, pp. 285-292, 2000.
  3. Lee, W., Kim, J., Chung, J., "Performance Evaluation of a Small Scale Two-Dimensional Impeller by Computational Fluid Dynamics", The Journal of Fluid Machinery, R&D Conference, pp. 473-478, 2006.
  4. Y. Choi., Y. Lee., S. Hong., S. Kang., "Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code," Journal of Fluid Machinery, Vol. 4, No. 1, pp 38-45. 2001.
  5. Lim, H. J., Lee, S. H., Byun, K. S., Oh, S. J., "A study of the Optimized impeller for Automatic HVAC system by Computational Fluid Dynamics", The Society of Air-Conditioning and Refrigerating Engineers of Korea, Winter Conference, pp.662-667, 2001.
  6. Lee, S. H., Lim, H. J., "A Study of the optimized impeller for automobile HVAC system", Korean Society of Automotive Engineering, Spring Conference, pp. 1307-1312, 2002.
  7. Mo, J., Nam, K., Kang, S., Lim, H., Lee, Y. "A Study on a Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code", The Korean Society of Power System Engineering, Spring Conference, pp.110-115, 2002.
  8. Nam, K., Mo, J, Kang, S., Im, H., Lee, Y. "A Study on a Performance Analysis of the Centrifugal Pump Impeller using CFD", The Korean Society of Marine Engineering, Spring Conference, pp. 89-94, 2002.
  9. Lee, H., Choi, H., Lee, W., Jung, J., Lee, Y., Kim, K., Chung, J., "Aerodyamics Performance of Multi-Blade Fan, Accodring to Different Shape of Impeller Shroud Side", The Journal of Fluid Machinery, R&D Conference, pp. 486-487, 2010.
  10. Willoughby, D., Carol, G., Sun, R., Williams J., and Maxwell, T., "A quasi 3-D Computational Procedure for Prediction of Turbulent Flow through the Front-End of Vehicles", SAE paper 850282, USA, 1985.
  11. China, H. and Kameyama, J., "A Two Dimensional Computational Procedure for Prediction of Engine Cooling Air Flow", JSAE Review, Vol 9, No 2, pp. 9 4-95, 1988.
  12. Han, T. and Skynar, M., "Three-Dimensional Navier-Stokes Analysis of Front End Air Flow for a Simplified Engine Compartment", SAE paper 921091, USA, 1992.