Abstract
Tomatoes were harvested at different ripening stages. To determine the ripening stages, We analyzed the relation between the compound concentrations of tomato measured with HPLC and the tomato RGB images. Among the compound concentrations, tomato quality is mostly affected by the Lycopene. The $Q^2$ error of the predicted Lycopene concentration and the corresponding independent component of tomato RGB image, determined from the PLS procedure, was 0.92. and we show the effectiveness of the independent component by comparing the error between the pixel area of RGB image applied by independent component and the simple black white tomato image. This regression made it possible to construct concentration images of the tomatoes, which showed non-uniform ripening. The method can be applied in an unsupervised real time sorting machine of unripe and discolored tomato using the compound concentrations.
토마토는 여러 가지 다른 숙성 단계에서 수확될 수 있다. 토마토의 숙성 상태를 판단하기 위해 토마토 과육을 HPLC로 분석한 여러 가지 화합물과 토마토 RGB 이미지를 ICA로 분석한 독립성분간의 관계를 분석하였다. 여러 토마토 화합물중 품질에 가장 영향을 많이 미치는 라이코펜과 토마토 RGB 이미지의 독립성분간의 부분최소제곱 $Q^2$ 값이 0.92로 매우 높음을 알 수 있었다. 그리고 라이코펜에 대응되는 독립성분을 토마토 RGB 이미지에 적용하여 픽셀 면적을 구한 것과 단순이진 이미지로 구해진 이미지의 픽셀 면적간의 비교를 제시하여 독립성분의 유효성을 제시하였다. 독립성분을 반영한 토마토 이미지를 통해 토마토의 숙성 상태를 보여주는 것이 가능하며, ICA 독립성분을 이용한 농축이미지 생성을 통해 토마토의 색상이 좋지 않거나 라이코펜과 같은 주요 성분이 없게 된 토마토를 분류해 내는 것이 가능해진다.