DOI QR코드

DOI QR Code

A Methodology for Hedging Equity Linked Warrant Using Artificial Neural Network

인공신경망을 이용한 주식워런트증권(ELW)의 헤징 방안

  • Ryu, Jae-Pil (Dept. of Management Engineering, Sangmyung University) ;
  • Shin, Hyun-Joon (Dept. of Management Engineering, Sangmyung University)
  • 유재필 (상명대학교 경영공학과) ;
  • 신현준 (상명대학교 경영공학과)
  • Received : 2011.11.18
  • Accepted : 2012.03.08
  • Published : 2012.03.31

Abstract

From the perspective of risk management, financial organization that have issued ELW require an efficient hedging methodology due to recently increased trade volume of ELW. This study presents an ELW hedging methodology using artificial neural network(ANN) to minimize hedging costs. The performance of the presented methodology in this study is examined by analysis utilizing the prices and volatilities of underlying assets, risk free interest rates, and maturities and computational experiments show that the proposed method is superior to existing dynamic delta hedging(DDH) technique in terms of hedging costs ranged from 25% to 250%.

최근 주식 워런트 증권(ELW)의 시장 규모가 급격하게 증가하면서 ELW를 발행한 금융기관들에는 리스크 관리 측면에서 효율적인 헤징 방안에 대한 필요성이 대두되고 있다. 본 연구는 인공신경망 학습 기법을 이용하여 ELW를 헤징하는 데 소요되는 비용을 최소화하는 방안을 제시하고자 하며, 기초자산의 현재가격, 변동성, 무위험이자율, 만기 등의 시장 상황 변화에 따른 다양한 시나리오에 대한 실험을 통해 본 연구에서 제시하는 방법론의 성능을 기존의 동적 델타 헤징 방법론과 비교 실험하였다. 그 결과 만기 행사가 안 된 상품의 경우 본 연구에서 제시하는 헤징 방법론이 동적 델타 헤징에 비해 최종 비용이 약 250% 이상 개선되었으며, 행사한 상품은 최종 비용에 있어서 약 25%의 개선 율을 보이는 것을 알 수 있었다.

Keywords

References

  1. Andreou, P.C., Charalambous, C. and Martzoukos, S.H., "Robust Artificial Neural Networks for Pricing of European Options", Computational Economics, vol. 27, no. 2-3, pp. 329-351, 2006. https://doi.org/10.1007/s10614-006-9030-x
  2. Andreou, P.C., Charalambous, C. and Martzoukos, S.H. "Pricing and Trading European Options by Combining Artificial Neural Networks and Parametric Models with Implied Parameters", European Journal of Operational Research, vol. 185, no. 3, pp. 1415-1433, 2008. https://doi.org/10.1016/j.ejor.2005.03.081
  3. Andreou, P.C., Charalambous, C. and Martzoukos, S.H. "Generalized Parameter Functions for Option Pricing", Journal of Banking and Finance, vol. 34, no. 3, pp. 633-646, 2010. https://doi.org/10.1016/j.jbankfin.2009.08.027
  4. Andreou, P.C., Martzoukos, S.H. and Charalambous, C. "Option Pricing and Trading with Artificial Neural Networks and Advanced Parametric Models with Implied Parameters". In Proceedings of the 2004 International Joint Conference on Neural Networks, vol. 4, IEEE, pp. 2741-2746, 2004.
  5. Choi, H.H., Lee, H.S., Han, G.S. and Lee, J. "Efficient Option Pricing Via a Globally Regularized Neural Network", In Proceedings of an International Symposium on Neural Networks 2004, Part 2, pp. 988-993, 2004.
  6. Gençay, R and Gibson, R. "Model Risk for European Style Stock Index Options", IEEE Transactions on Neural Networks 18, vol. 18, no. 1, pp. 193-202, 2007. https://doi.org/10.1109/TNN.2006.883005
  7. Gradojevic, N., Gençay, R. and Kukolj, D. "Option Pricing with Modular Neural Networks", IEEE Transactions on Neural Networks, vol. 20, no. 4, pp. 626-637, 2009. https://doi.org/10.1109/TNN.2008.2011130
  8. Gyeong Su Yi, Young Un Goun, Ji Ho Sin, "Derivatives Modeling I: Using MATLAB", pp. 94-103, A-JIN Publishing Co., 2008.
  9. Figlewki, S., "Hedging Performance and Basis Risk in Stock Index Futures", Journal of Finance, 39, pp. 657-669, 1984. https://doi.org/10.1111/j.1540-6261.1984.tb03654.x
  10. Figlewki, S., "Hedging with Stock Index Futures : Theory and Applicatios in a New Market", Journal of Futures Markets, 5, pp. 183-199, 1985. https://doi.org/10.1002/fut.3990050204
  11. Ghosh, A., "Hedging with Stock Index futures: Estimation and Forecasting with Error Correction Model", Journal of Futures Markets, 13, pp. 743-752, 1993. https://doi.org/10.1002/fut.3990130703
  12. Grammatikos Theoharry, Anthony Saunders, "Stability and the Hedging Performance of Foreign Currency Futures", The Journal of Futures Markets, 3(3), pp. 295-305, 1983. https://doi.org/10.1002/fut.3990030305
  13. Gencay R. and Qi M., "Pricing and Hedging Derivative Securities with Neural Networks: Bayesian Regulation, Early Stopping, and Bagging", IEEE Transactions on Neural Networks, 12, pp. 726-734, 2001. https://doi.org/10.1109/72.935086
  14. Haykin S., "Neural networks A comprehensive foundation", Prentice-Hall of India, 1999.
  15. Hutchinson J. M., Lo A.W., and Poggio T., 1994, "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks", Journal of Finance, 49, pp. 851-889. https://doi.org/10.1111/j.1540-6261.1994.tb00081.x
  16. Hyuk Choe, Min-Cheol Woo, "Difference in Capability of Liquidity Provision among Liquidity Providers in Korean ELW Market", The Journal of Korean Securities Association, 39(2), pp. 161-190, 2010.
  17. Jae Ha Lee, Gwang Youl Jang, "Hedging Strategies with the KOSPI 200 Futures", The Journal of Korean Securities Association, 28(1), pp. 379-420, 2001.
  18. Jae Pil Ru, Hyun Joon Shin, "An Option Hedge Strategy Using Machine Learning and Dynamic Delta Hedging", The Korea Academia-industrial cooperation Society, 12(2), pp. 712-717, 2011. https://doi.org/10.5762/KAIS.2011.12.2.712
  19. John C. Hull, "Options, Futures and Other Derivatives", Person Prentice Hall, 2006.
  20. Marmer, H.S., "Portfolio Model Hedging with Canadian Dollar Futures: A Framework for Analysis", The Journal of Futures Markets, 6(1), pp. 83-92, 1986. https://doi.org/10.1002/fut.3990060108
  21. Moo-Sung Kim, Tae-Hun Kang, "On the Usefulness of Risk-Neutral Distribution Implied in the KOSPI 200 Index Option", Asia-Pacific Journal of Financial Studies, 35(4), pp. 103-141, 2006.
  22. Morelli, M.J., Montagna, G., Nicrosini, O., Treccani, M., Farina, M., and Amato, P. "Pricing Financial Derivatives with Neural Networks, Physica A: Statistical Mechanics and its Applications", vol. 338, no. 1-2, pp. 160-165, 2004. https://doi.org/10.1016/j.physa.2004.02.038
  23. Mostafa, F. and Dillon, T. "A Neural Network Approach to Option Pricing. In Computational Finance and its Applications III", edited by M. Constantino, M. Larran and C.A. Brebbia, WIT Press, pp. 71-86, 2008.
  24. Myers, R.J., "Estimating Time-Varying Optimal Hedge Ratios on Futures Markets", The Journal of Futures Markets, 11(1), pp. 39-53, 1991. https://doi.org/10.1002/fut.3990110105
  25. Peters, E., "Hedged Equity Portfolios: Components of Risk and Return", Advances in Futures and Options Research, 1, pp. 75-91, 1986.
  26. Samur, Z.I. and Temur, G.T. "The Use of Artificial Neural Network in Option Pricing: The Case of S&P 100 Index Options, World Academy of Science", Engineering and Technology, vol. 54, pp. 326-331, 2009.