DOI QR코드

DOI QR Code

Performance Development of 400cc Small Engine Intake Port

400cc급 소형엔진 흡기포트의 성능 개발

  • Park, Yun-Seo (Mechanical Engineering Dept., Graduate School, Kongju National University) ;
  • Choi, Doo-Seuk (Green-Car Technology Institute, Kongju National University) ;
  • Lee, Ju-Hyung (High Voltage Solution Team, Production & Technology Group, LS Industrial System Co., Ltd.) ;
  • Shin, Pyung-Woo (Dept., of Metallurgy & Advanced Materials Engineering, Changwon National University) ;
  • Park, Sung-Young (Green-Car Technology Institute, Kongju National University)
  • 박윤서 (공주대학교 일반대학원 기계공학과) ;
  • 최두석 (공주대학교 그린카기술연구소) ;
  • 이주형 (LS산전 고압계통 솔루션팀) ;
  • 신평우 (창원대학교 기계자동차공학부) ;
  • 박성영 (공주대학교 그린카기술연구소)
  • Received : 2011.11.29
  • Accepted : 2012.03.08
  • Published : 2012.03.31

Abstract

Performance optimization of a small engine intake port has been studied through computational and experimental approach. Port angle, flange area and port shape are very important design parameters affecting performance of an intake port. Especially, radius of curvature of intake port inner surface has major effect on the flow coefficient of an intake port. As increasing port angle and flange area, flow coefficient is increased because pressure distribution and pressure gradient in the intake port are improved. Even though computational results over-predict maximum 8% compared with experimental result, they describe the tendency of flow coefficient according to the design parameters. Optimized intake port shows about 4.5% improved flow performance.

본 연구에서는 유동해석과 실험을 통하여 소형엔진 흡기포트의 성능 최적화를 수행하였다. 포트각, 플랜지면적 및 포트형상은 흡기포트의 성능을 결정하는 중요한 설계인자이다. 특히 가공곡률이 공기유량계수에 매우 중요한 영향을 미치는 핵심인자임을 확인하였다. 포트각과 플랜지면적이 증가하면, 흡기포트내의 압력분포와 압력기울기가 개선되어 공기유량계수가 개선되었다. 유동해석 결과는 플로우박스 실험결과 대비 최대 8% 오차를 보였으나, 설계변수에 따른 공기유량계수 경향을 우수하게 반영하였다. 최적의 설계변수를 적용한 흡기포트 모델은 양산모델 대비 약 4.5% 개선된 공기유량계수 성능을 나타내었다.

Keywords

References

  1. Sang-jin Lee, Seong-cheol Kim, Duk-sang Kim, In-yong Ohm, Yong-seok Cho, "Numerical analysis of flow characteristics with intake port and valve design", KSME 01F29B, pp.921-927, 2001.
  2. Won-gu Kang, Chung-hyuk Lee, Duk-sang Kim, Yong-seok Cho, "Correlation of Flow Characteristics and Flow Coefficient with Intake Port Design", KSAE04-F0012, pp.70-76, 2004.
  3. Byoung-hwa Lee, Young-june Chang, Chung-hwan Jeon, "A Numerical Study on the Characteristics of Tumble and Internal Flow According to Intake Port for Marine Engine", KOSME, pp.498-505, 2008. https://doi.org/10.5916/jkosme.2008.32.4.498
  4. Chan-guk Park, Hyung-koo Park, Myung-taeck Lim, "Numerical Analysis of the Flow characteristics in Intake-Port Piston Head Configurations in a Gasoline Direct-Injection Engine", KSCFE 4-5 pp.21-27, 1999.
  5. William A. Schuster, "Small engine Technology, Second Edition", Delmar Publishers, 1999.
  6. Mitsubishi Heavy Industries Inc., "Workshop Manual Mitsubishi meiki engine TYPE GM SERIES", 2002.
  7. Jin-Wook Son, Sihun Lee, Bonghoon Han, Wootae Kim, "A Correlation between Re- Defined Design Parameters and Flow Coefficients of SI Engine Intake Ports", SAE Paper No. 2004-01-0998, 2004.
  8. NIKA GmbH, "COSMOS-FloWorks User's Manual", 2007.
  9. Performance Trends Inc., "Engine Analyzer for Windows", 2008.
  10. Performance Trends Inc., "SF-110/120FC Flow bench Operator's Manual", 2008.