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Abstract

In this paper we study some basic statistics in quantile regression. In particular, we investigate the residual,

goodness-of-fit statistic and the effect of one or few observations on estimates of regression coefficients. In

addition, we compare the proposed goodness-of-fit statistic with the statistic considered by Koenker and

Machado (1999). An illustrative example based on real data sets is given to see the numerical performance

of the proposed basic statistics.
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1. Introduction

Classical regression methods are mainly concerned about estimating conditional mean function

when covariates are given; however, quantile regression methods, first introduced by Koenker and

Bassett (1978) focused on the estimation of conditional quantile functions. A special case of quan-

tile regression is the least absolute deviation(LAD) estimator by fitting medians to covariates; in

addition, it is well known that LAD is more robust to outliers than the classical least squares es-

timators(LSE). Since then, quantile regression has emerged as a comprehensive tool in statistical

regression modelling that has been widely used in many fields. Among them, Cole and Green (1992),

and Heagerty and Pepe (1999) applied to reference charts in medicine and Hendricks and Koenker

(1992), and Koenker and Hallock (2001) applied to economic modelling. One novel feature of quan-

tile regression is its applicability to the censored regression that was initiated by Powell (1984, 1986)

and further developed by Portnoy (2003). Subsequent works in censored regression include Peng

and Huang (2008), Yin et al. (2008), Shim and Hwang (2009), Wang and Wang (2009), and Huang

(2010). Also, Li et al. (2007) studied quantile regression in the reproducing kernel Hilbert space.

Good papers for review are, Yu et al. (2003) and Koenker (2008); in addition, an excellent book in

quantile regression is Koenker (2005).

In this paper, we study some basic statistics in quantile regression. In particular, we investigate

residual, the goodness-of-fit statistic, and the effect of one or few observations on estimates of
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regression coefficients. Goodness-of-fit statistic in quantile regression was first considered by Koenker

and Machado (1999). They derived a version of the coefficient of determination as a goodness-of-

fit statistic in quantile regression. We consider another version of the goodness-of-fit statistic, and

compare with the statistic suggested by Koenker and Machado (1999) through numerical studies. In

addition, we suggest a quantile version of residual in quantile regression, and argue that the proposed

residual can serve as a basic building block. Further, we investigate the effect of observations on

the estimate of regression coefficients, and we note that it is significantly different from the case of

least squares estimator. The rest of this paper is organized as follows.

In Chapter 2, review on the quantile regression features is given. In Chapter 3, we suggest a version

of residual and the goodness-of-fit statistic in quantile regression; in addition, and investigation on

the perturbation of observations is given. Numerical studies assessing two goodness-of-fit statistics

are given in Chapter 4.

2. Quantile Regression

Consider a multiple linear model

yi = xT
i β + ϵi, i = 1, 2, . . . , n

where yi is a response variable, xi is a p-vector of covariate with 1 in the first component, β is a

p-vector of unknown coefficients, and ϵi is a identically and independently distributed error with

mean 0 and variance σ2. The least squares estimation(LSE) of β is obtained by minimizing the

quadratic loss function r(u) = u2/2, i.e., given {xi, yi}ni=1, the LSE is obtained by minimizing

n∑
i=1

r
(
yi − xT

i β
)
=

1

2

n∑
i=1

(
yi − xT

i β
)2

over β. Therefore, the LSE is concerned with the estimation of the conditional expectation E[Y |X =

x].

However, median quantile regression estimates the conditional median of Y given X = x, and

the corresponding loss function is |u|/2. The resulting estimator is called the least absolute devia-

tion(LAD) estimator, because it minimizes

n∑
i=1

r
(
yi − xT

i β
)
=

1

2

n∑
i=1

∣∣∣yi − xT
i β
∣∣∣ .

Note that

ρ0.5(u) = 0.5|u|
= 0.5uI[0,∞)(u)− (1− 0.5)uI(−∞,0)(u),

where I(·) is an indicator function. By replacing 0.5 by τ , 100τ% quantile regression qτ (x) at x can

be defined as the value of θ that minimizes

E[ρτ (Y − θ)|X = x].

Here,

ρτ (u) = τuI[0,∞)(u)− (1− τ)uI(−∞,0)(u) (2.1)
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Figure 2.1. Check function(τ = 0.5, τ = 0.75)

is called the ‘check function’ (see Figure 2.1), and it can also be written as

ρτ (u) = u(τ − I(u < 0)).

Let

β̂τ = argβββ∈Rp min
n∑

i=1

ρτ
(
yi − xT

i β
)

be the τ th quantile estimator of β, and let

ŷτ,i = xT
i β̂τ

be the ith fitted value. In addition, let

eτ,i = yi − ŷτ,i (2.2)

be the ith residual in the τ th quantile regression.

3. Basic Statistics in Quantile Regression

3.1. Goddness-of-fit statistic

Note that, in the quantile regression, the residual eτ,i defined in (2.2) is not appropriate since it does

not reflect the aspect of the value τ . Here, we define a residual, which can reflect the characteristic

of quantile regression, as

rτ,i = ρτ (eτ,i)

= τeτ,iI[0,∞)(eτ,i)− (1− τ)eτ,iI(−∞,0)(eτ,i).

As in the classical linear model, the proposed residual rτ,i in the quantile regression can be used as

basic building blocks for diagnostic issues, model checking, and the goodness-of-fit statistic.

To derive a goodness-of-fit measure, we first consider decomposition of sum of squares in the LSE

case, i.e.,

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2

SST = SSR + SSE .
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Figure 3.1. Scatter plot of 20 artificial data set

Using this, the coefficient of determination R2 is defined as

R2 =
SSR

SST
= 1− SSE

SST
.

Now, we define the goodness-of-fit statistic in the quantile regression by a similar way of decompo-

sition. To do this, let ȳτ be the τ th quantile estimate based on Y1, Y2, . . . , Yn, i.e., the τ
th quantile

estimate of β when there are no covariates. Then, we have

(yi − ȳτ ) = (yi − ŷτ,i) + (ŷτ,i − ȳτ ).

Again, to reflect the characteristic of quantile regression we apply the transformation ρτ (·) on

each term in (2.1), and call them SAT(Total Sum of Absolute deviation), SAR(Regression Sum of

Absolute deviation), and SAE(Error Sum of Absolute deviation), respectively, i.e.,

SATτ =
n∑

i=1

ρτ (yi − ȳτ ),

SARτ =

n∑
i=1

ρτ (ŷτ,i − ȳτ ),

SAEτ =

n∑
i=1

ρτ (yi − ŷτ,i) =

n∑
i=1

rτ,i.

Note that,

SATτ ̸= SARτ + SAEτ .

Here, we suggest a goodness-of-fit statistic for the significance of the current quantile regression

model as

Rτ =
SARτ

SATτ
,

which can be regarded as a quantile regression version of the coefficient of determination R2. On the

other hand, Koenker and Machado (1999) proposed a goodness-of-fit statistic for the significance

of the current quantile regression model as

R1
τ = 1− SAEτ

SATτ
.
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Figure 3.2. The quantile fit does not change at all even though we move an observation, which lies above the fitted line, to
upwards (τ = 0.75)

Note that Rτ +R1
τ ̸= 1, and we usually have Rτ +R1

τ > 1. In addition, it is not possible to suggest

a cutoff value for Rτ since the coefficient of determination is used only for a relative measure, not

for an absolute measure.

Remark 3.1. In computing SATτ and SARτ , there are two types; One is based on its own sign of

yi− ȳτ and ŷτ,i− ȳτ , respectively, and the other is based on the sign of its residual yi− ŷτ,i. As far as

we know, there are no research results on this problem. We tried both methods in computing SATτ

and SARτ in numerical studies, and we found that the method based on the sign of its residual

yi − ŷτ,i gave more consistent results.

3.2. Perturbation of observations

In this section we investigate several different features in quantile regression fit from those in the

ordinary least squares fit using an artificial data set (see Figure 3.1). The artificial data set of size 20

were as follows; The explanatory variable X was generated from the uniform distribution U(0, 1),

and the error terms were generated from the standard normal distribution N(0, 1). Finally, the

response variable was set Y = 1 +X + ϵ.

First, the quantile regression fit does not change at all even though we move an observation, which

lies above the fitted line, to upwards. Similarly, the quantile regression fit does not change at all

even though we move an observation, which lies below the fitted line, to downwards. This feature

is illustrated in Figure 3.2. The robustness of the quantile regression is due to this phenomenon.

Second, a slight change of an observation on the fitted line does change the fitted line, however, the

amount of change does not matter (see Figure 3.3).

Third, we investigate the effect of deletion of one observation on the fitted line. In the LSE case,

an influential observation is usually due to an outlier with large residual and/or a high leverage

point. To see whether the same phenomenon occurs in the quantile regression, we compute β̂τ,0 −
β̂τ,0(i), β̂τ,1 − β̂τ,1(i), residual rτ,i and leverage in Table 3.1, where β̂τ,k and β̂τ,k(i) denote estimate

of βτ,k, k = 0, 1 based on n observations and n− 1 observations after deleting the ith observation,

respectively. We note that the effect of residual and leverage in the quantile regression is quite

different from the ordinary LSE case, because residual and leverage do not show any systematic

effects on the influence.
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Figure 3.3. The quantile fit changes by moving an observation on the fitted line to upwards or downwards, and the amount of
change does not matter (τ = 0.75)

Table 3.1. Relationships between changes in estimates, residual, and leverage when one observation is deleted in the artificial
data set (τ = 0.75)

i β̂τ,0 − β̂τ,0(i) β̂τ,1 − β̂τ,1(i) Residual Leverage

1 0 0 −0.0525 0.175

2 0 0 −0.0384 0.0558

3 0.0463 −0.0597 −0.0364 0.1321

4 0.0463 −0.0597 0 0.1046

5 0.0583 −0.2604 0.0312 0.0505

6 0.0463 −0.0597 −0.0499 0.0515

7 0 0 −0.0552 0.1084

8 0 0 −0.0257 0.0729

9 −0.1115 0.1436 0.0297 0.1678

10 0.0463 −0.0597 −0.0244 0.1782

11 0 0 −0.0716 0.0987

12 0.0463 −0.0597 −0.0244 0.0516

13 0.0463 −0.0597 −0.0524 0.0830

14 0.0583 −0.2604 0.0252 0.0571

15 0.0583 −0.2604 0.0704 0.0503

16 0 0 −0.0572 0.0809

17 0 0 −0.038 0.1351

18 0.0463 −0.0597 −0.0515 0.1051

19 0.071 −0.2808 0 0.1424

20 0.0463 −0.0597 −0.0463 0.0991

3.3. Example

As an illustrative example for the goodness-of-fit measure in quantile regression, we use food expen-

diture data in Koenker and Bassett (1982). This data set consists of 235 observations about income

and expenditures on food in Belgian working class households. The response variable is food expen-

diture and exploratory variable is income. In this data, variations in response for large income are

larger than those for small income, and therefore, quantile regression is more appropriate than the

usual least squares regression. For each τ , we compute two goodness-of-fit statistics Rτ and R1
τ for

the linear and quadratic fit in food expenditure data. We see that both statistics suggest that the

linear model is enough, i.e., the extra contribution of the quadratic term is not significant. We will

investigate the performance of both statistics in Section 4.
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Table 3.2. Two goodness-of-fit statistics for the linear and quadratic fit in food expenditure data

τ
Linear Model Quadratic Model

Rτ R1
τ Rτ R1

τ

0.1 0.7884 0.6286 0.8026 0.6381

0.2 0.8356 0.6271 0.8489 0.6443

0.3 0.8719 0.6280 0.8920 0.6469

0.4 0.9068 0.6170 0.9247 0.6463

0.5 0.9645 0.6206 0.9545 0.6441

0.6 0.9797 0.6320 0.9796 0.6643

0.7 0.9842 0.6608 0.9558 0.6868

0.8 0.9959 0.7071 0.9676 0.7319

0.9 0.9490 0.7683 0.9551 0.7685

4. Simulation Study

To investigate numerical performance of two goodness-of-fit statistics Rτ and R1
τ , we consider two

types of models (case I and case II - see below). The artificial data set of size n were generated as

follows. The explanatory variables X1, X2 and the error terms were generated from the standard

normal distribution N(0, 1). Finally, the response variable was set Y = 1 + X1 + ϵ in Case I and

Y = 1 +X1 +X2 + ϵ in Case II. For the sample size, we consider n = 30, 50, and 100. Also, 1,000

replications are done.

(I) Case I

true model: X1

postulated model: I-A (X1), I-B (X1, X2)

(II) Case II

true model: X1, X2

postulated model: II-A (X1), II-B (X1, X2)

In each case, we compute Rτ and R1
τ for each postulated model, and results are summarized in

Table 4.1–Table 4.3. Here, RA,τ and RB,τ denote the value of Rτ under each postulated model A

and B, respectively. We see that both statistics Rτ and R1
τ perform quite well in detecting true

model; however, Rτ shows better results than R1
τ in the sense that Rτ is quite stable for each τ

while R1
τ is not (see Figure 4.1). The variation in R1

τ for each τ is larger than that of Rτ ; however,

more systematic studies using discrepancy measures such as the mean squared error should be done

under various conditions.

5. Concluding Remarks

Quantile regression has increasingly become an important alternative statistical model when the

classical least squares methods are not appropriate or not applicable. The Quantile regression

method is quite robust to outliers compared to the least squares method. In this paper we study

basic statistics in the linear quantile regression. We define a version of residual, suggest a goodness-

of-fit statistic, and investigate influence of one or few observations. The residual we defined reflects

the characteristics of quantile, and can be serve as a basic building block for the goodness-of-fit

statistic and influence measure. The goodness-of-fit statistic we suggest is based on the amount of

contribution due to regression, while the existing goodness-of-fit statistic is based on the amount
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Table 4.1. Two goodness-of-fit statistics Rτ and R1
τ when n = 30

τ
Case I Case II

RA,τ RB,τ RB,τ −RA,τ RA,τ RB,τ RB,τ −RA,τ

0.1 0.6679 0.6958 0.0278 0.5492 0.7726 0.2233

0.2 0.6958 0.7158 0.0200 0.5731 0.8039 0.2309

0.3 0.7127 0.7328 0.0201 0.5941 0.8255 0.2314

0.4 0.7241 0.7472 0.0231 0.6041 0.8400 0.2359

0.5 0.7279 0.7503 0.0224 0.6073 0.8481 0.2408

0.6 0.7222 0.7417 0.0194 0.6004 0.8422 0.2418

0.7 0.7049 0.7293 0.0244 0.5822 0.8259 0.2437

0.8 0.6750 0.6983 0.0233 0.5540 0.7941 0.2401

0.9 0.6180 0.6436 0.0256 0.4979 0.7394 0.2415

τ
Case I Case II

R1
A,τ R1

B,τ R1
B,τ −R1

A,τ R1
A,τ R1

B,τ R1
B,τ −R1

A,τ

0.1 0.4178 0.4698 0.0520 0.2927 0.5805 0.2878

0.2 0.3647 0.3958 0.0311 0.2524 0.5179 0.2655

0.3 0.3354 0.3593 0.0239 0.2277 0.4831 0.2554

0.4 0.3190 0.3399 0.0209 0.2148 0.4625 0.2477

0.5 0.3114 0.3313 0.0199 0.2067 0.4536 0.2469

0.6 0.3101 0.3309 0.0208 0.2028 0.4527 0.2499

0.7 0.3132 0.3355 0.0223 0.2024 0.4596 0.2572

0.8 0.3208 0.3474 0.0266 0.2067 0.4775 0.2708

0.9 0.3306 0.3819 0.0513 0.2114 0.5207 0.3093

Table 4.2. Two goodness-of-fit statistics Rτ and R1
τ when n = 50

τ
Case I Case II

RA,τ RB,τ RB,τ −RA,τ RA,τ RB,τ RB,τ −RA,τ

0.1 0.6442 0.6620 0.0178 0.5167 0.7567 0.2400

0.2 0.6877 0.6988 0.0111 0.5583 0.7961 0.2378

0.3 0.7108 0.7210 0.0102 0.5760 0.8184 0.2424

0.4 0.7224 0.7354 0.0130 0.5928 0.8334 0.2406

0.5 0.7247 0.7384 0.0136 0.5918 0.8353 0.2434

0.6 0.7174 0.7299 0.0125 0.5820 0.8268 0.2448

0.7 0.7003 0.7110 0.0107 0.5707 0.8124 0.2417

0.8 0.6703 0.6829 0.0125 0.5462 0.7849 0.2388

0.9 0.6180 0.6337 0.0157 0.4948 0.7367 0.2420

τ
Case I Case II

R1
A,τ R1

B,τ R1
B,τ −R1

A,τ R1
A,τ R1

B,τ R1
B,τ −R1

A,τ

0.1 0.3803 0.4065 0.0262 0.2530 0.5380 0.2850

0.2 0.3433 0.3590 0.0157 0.2264 0.4902 0.2638

0.3 0.3217 0.3344 0.0127 0.2084 0.4641 0.2557

0.4 0.3109 0.3222 0.0113 0.1999 0.4492 0.2493

0.5 0.3063 0.3170 0.0107 0.1956 0.4430 0.2474

0.6 0.3064 0.3177 0.0113 0.1945 0.4444 0.2499

0.7 0.3112 0.3239 0.0127 0.1965 0.4528 0.2563

0.8 0.3178 0.3338 0.0160 0.2035 0.4710 0.2675

0.9 0.3318 0.3599 0.0281 0.2070 0.5031 0.2961

of contribution due to error. Two types of goodness-of-fit statistics reduces to the same statistics

in the classical least squares estimation; however, they differ quite a lot in the quantile regression.
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Table 4.3. Two goodness-of-fit statistics Rτ and R1
τ when n = 100

τ
Case I Case II

RA,τ RB,τ RB,τ −RA,τ RA,τ RB,τ RB,τ −RA,τ

0.1 0.6359 0.6431 0.0072 0.5105 0.7445 0.2340

0.2 0.6747 0.6801 0.0054 0.5489 0.7824 0.2334

0.3 0.6992 0.7045 0.0053 0.5701 0.8066 0.2365

0.4 0.7130 0.7188 0.0058 0.5825 0.8210 0.2385

0.5 0.7157 0.7214 0.0057 0.5832 0.8259 0.2427

0.6 0.7119 0.7168 0.0049 0.5819 0.8212 0.2393

0.7 0.6932 0.6991 0.0059 0.5663 0.8052 0.2389

0.8 0.6673 0.6714 0.0041 0.5436 0.7781 0.2345

0.9 0.6222 0.6283 0.0061 0.5000 0.7347 0.2347

τ
Case I Case II

R1
A,τ R1

B,τ R1
B,τ −R1

A,τ R1
A,τ R1

B,τ R1
B,τ −R1

A,τ

0.1 0.3568 0.3717 0.0149 0.2286 0.5074 0.2788

0.2 0.3301 0.3389 0.0088 0.2115 0.4724 0.2609

0.3 0.3134 0.3200 0.0066 0.1998 0.4509 0.2511

0.4 0.3036 0.3097 0.0061 0.1927 0.4385 0.2458

0.5 0.2998 0.3053 0.0055 0.1896 0.4336 0.2440

0.6 0.3007 0.3063 0.0057 0.1897 0.4357 0.2460

0.7 0.3058 0.3123 0.0065 0.1932 0.4440 0.2508

0.8 0.3158 0.3236 0.0078 0.1993 0.4590 0.2597

0.9 0.3334 0.3467 0.0133 0.2052 0.4857 0.2805

Figure 4.1. RB,τ − RA,τ and R1
B,τ − R1

A,τ for τ = 0.1(0.1)0.9 when n = 30. (a) Case I, (b) Case II

Through numerical studies based on artificial data sets, we found that our statistic is more sta-

ble than the existing one as far as determining the threshold. In addition, we noticed that one or

few observations can be influential in the quantile regression; however, they showed quite different

aspects from the classical regression diagnostics which is mostly based on the residual and leverage.

For future research, we need a more systematic approach to analyze the difference between two

types of goodness-of-fit statistics. In addition, it will be quite important to derive a version of

Cook’s distance in quantile regression. Further, it is worth pursuing to study basic statistics in the

nonparametric quantile regression.
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