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Abstract

This paper proposes some alternative classes of shrinkage estimators and analyzes their properties. In partic-

ular, some new shrinkage estimators are identified and compared with Pandey (1983), Pandey and Srivastava

(1985) and Jani (1991) estimators. Numerical illustrations are also provided.
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1. Introduction

The exponential model is widely used in the field of life testing and reliability. Let x1, x2, . . . , xn

be a random sample from exponential distribution with the probability density function

f(x, θ) =
1

θ
exp

{
−
(x
θ

)}
, θ > 0, x ≥ 0. (1.1)

The maximum likelihood estimate for the scale parameter θ is the sample mean x̄ = (
∑n

i=1 xi/n)

which is unbiased and the minimum variance unbiased linear estimate. The minimum mean squared

error(MMSE) estimator of θ in the class of linear estimators of the type
∑n

i=1 cixi is

T1 =
n

n+ 1
x̄, (1.2)

with mean squared error(MSE)

MSE(T1) =
θ2

n+ 1
. (1.3)

In many practical situations the experimenter has some prior estimates regarding the value of the

parameter, either due to experience or acquaintance with the behavior of the system. Let θ0 be
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the guessed value or prior estimate of θ. Thompson (1968) gave the idea of shrinking the minimum

variance unbiased estimator(MVUE) towards the prior estimate θ0, in order to divide a better

estimate and suggested a shrinkage estimator

T2 = Kx̄+ (1−K)θ0, (1.4)

where K is a known constant, 0 < K < 1, and is specified by the experimenter in advance according

to his belief in prior estimate θ0. A value of K near to one implies strong belief in sample values.

If K is not known, Pandey (1983) suggested two shrunken estimators for θ as

Tj =
(x̄− θ0)

3{
(x̄− θ0)2 +

x̄2

n+ j − 3

} + θ0; (j = 3, 4). (1.5)

Pandey (1983) has shown that Tj , (j = 3, 4) have smaller MSE than MMSE estimator T1 if |r| ≤ 0.3,

where r = {(θ0/θ)− 1}.
Pandey and Srivastava (1985) proposed an estimator for θ as

T5 = θ0 +

(
n− 2

n

)
(x̄− θ0) (1.6)

and claimed that for large samples T5 has smaller MSE than T1 if |r| ≤
√
3/2.

Pandey and Srivastava (1985) suggested two more estimators for θ as

T6 = θ0 +

(
n− 1

n

)
(x̄− θ0) (1.7)

and

T7 = θ0 +

(
n2 + n− 12

n2

)
(x̄− θ0) (1.8)

Jani (1991) suggested a class of estimators for θ as

Tp = θ0

{
1 +W

(
θ0
x̄

)p}
, (1.9)

where W is a constant such that MSE of Tp is minimum and p is a ‘non-zero’ real number.

The MSE of Tp is given by

MSE(Tp) = θ2
{
r2 +W 2(1 + r)2(p+1) n

2p√n− 2p√
n

+ 2Wr(1 + r)(p+1) − np√n− p√
n

}
. (1.10)

Minimization of (1.10) with respect to W gives

W =

(
θ − θ0
θ

)(
θ

θ0

)(p+1) √
n− p

np
√
n− 2p

. (1.11)

Since (1.11) contains unknown parameter θ, thus we cannot knowW . Replacing θ by its MLE/MVUE

x̄, Jani (1991) obtained the estimate of W as

Ŵ1 =

(
x̄− θ0
x̄

)(
x̄

θ0

)(p+1) √
n− p

np
√
n− 2p

. (1.12)
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Substituting (1.12) in (1.9), Jani (1991) obtained a class of estimators for θ as

Tp1 = θ0 +Wp(1)(x̄− θ0) (1.13)

with

Wp(1) =

√
n− p

np
√
n− 2p

. (1.14)

For p = 1, (1.13) reduces to Pandey and Srivastava (1985) estimator T5 while p = −1, Tp1 reduces

to the estimator

T8 = θ0 +

(
n

n+ 1

)
(x̄− θ0) (1.15)

which is due to Jani (1991).

Many more shrinkage estimators can be obtained from (1.13) for different values of p. However, it

should be mentioned here that the class of shrinkage estimators Tp1 obtained by Jani (1991) is not

unique. In this paper we have provided some new alternative classes of shrinkage estimators for θ,

just by giving different estimators of W in (1.11).

2. Alternative Classes of Shrinkage Estimators

Case 1: If in (1.11), we replace θ by x̄ and θ(p+1) by its unbiased estimator

θ̂(p+1)
u =

n(p+1)√n√
n+ p+ 1

x̄(p+1), (2.1)

we get the estimated value of W as

Ŵ2 =

(
x̄− θ0
θ0

)(
x̄

θ0

)p (
n

n+ p

) √
n
√
n− p√

n+ p
√
n− 2p

.

Substitution of Ŵ2 in (1.9) yields the shrinkage estimator

Tp2 = θ0 +Wp(2)(x̄− θ0) (2.2)

with

Wp(2) =

(
n

n+ p

) √
n
√
n− p√

n+ p
√
n− 2p

.

Replacing x̄ by MMSE estimator (n/(n+1))x̄ in Tp2 we get the following class of shrinkage estimators

for θ as

T ∗
p2 = θ0 +Wp(2)

{(
n

n+ 1

)
x̄− θ0

}
. (2.3)

For p = 1, T ∗
p2 reduces to the estimator

T9 = θ0 +

(
n− 2

n+ 1

){(
n

n+ 1

)
x̄− θ0

}
. (2.4)
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Case 2: If we replace θ by x̄ and (1/θ) by its unbiased estimator (1/θ̂)u = ((n − 1)/n)(1/x) in

(1.11) we get an estimator of W as

Ŵ3 =

(
x̄− θ0
θ0

)(
x̄

θ0

)p+1 (
n− 1

n

) √
n− p

np
√
n− 2p

.

Substitution of Ŵ3 in (1.9) gives the following class of shrinkage estimators

Tp3 = θ0 +Wp(3)(x̄− θ0), (2.5)

where

Wp(3) =

(
n− 1

n

) √
n− p

np
√
n− 2p

.

Replacing x̄ by MMSE estimator (n/(n+1))x̄ in (2.5) we get another class of shrinkage estimators

for θ as

T ∗
p3 = θ0 +Wp(3)

{(
n

n+ 1

)
x̄− θ0

}
. (2.6)

For p = 1, T ∗
p3 boils down to the shrinkage estimator

T10 = θ0 +
(n− 1)(n− 2)

n2

{(
n

n+ 1

)
x̄− θ0

}
. (2.7)

Case 3: Replacing θ by x̄, (1/θ) by (1/θ)u = ((n − 1)/n)(1/x) and θ(p+1) by θ̂
(p+1)
u = np+1√n/√

n+ p− 1 in (1.11) we get another estimator of W as

Ŵ4 =

(
x̄− θ0
θ0

)(
x̄

θ0

)p (
n− 1

n+ p

) √
n
√
n− p√

n− 2p
√
n+ p

.

Putting Ŵ4 in (1.9) we get a class of estimators for θ as

Tp4 = θ0 +Wp(4) (x̄− θ0) , (2.8)

where

Wp(4) =

(
n− 1

n+ p

) √
n
√
n− p√

n− 2p
√
n+ p

.

Again replacing x̄ by MMSE estimator (n/(n+ 1))x̄ in (2.8) we get a class of shrinkage estimators

for θ as

T ∗
p4 = θ0 +Wp(4)

{(
n

n+ 1

)
x̄− θ0

}
. (2.9)

If we set p = 1 in (2.9) we get the shrinkage estimator for θ as

T11 = θ0 +
(n− 1)(n− 2)

n(n+ 1)

{(
n

n+ 1

)
x̄− θ0

}
. (2.10)

Case 4: Replacing θ by its MMSE estimator (n/(n + 1))x̄, (1/θ) by its MMSE estimator ((n −
2)/n)(1/x) in (1.11) we get the estimated value of W as

Ŵ5 =

(
1

θ0

){(
n

n+ 1

)
x̄− θ0

}(
x̄

θ0

)p(
n− 2

n+ 1

) √
n− p

(n+ 1)p
√
n− 2p

.
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Putting Ŵ5 in (1.9) we get the class of estimators for θ as

Tp5 = θ0 +Wp(5)

{(
n

n+ 1

)
x̄− θ0

}
, (2.11)

where

Wp(5) =

(
n− 2

n+ 1

) √
n− p

(n+ 1)p
√
n− 2p

.

For p = 1, Tp5 turns out to the shrinkage estimator for θ as

T12 = θ0 +

(
n− 2

n+ 1

)2{(
n

n+ 1

)
x̄− θ0

}
. (2.12)

Thus we see that a large number of classes of shrinkage estimators can be given and from these a

large number of estimators can be generated for different choices of p.

3. MSEs of Different Estimators of Scale Parameter θθθ

To obtain the mean squared errors of various estimators of θ such as Tpi , (i = 1, 2, 3, 4, 5); T ∗
pj ,

(j = 2, 3, 4) and Tk, (k = 5, 6, 7, 8, 9, 10, 11, 12); we write

T = θ0 +W(n,p)

(
α(n,p)x̄− θ0

)
, (3.1)

where

W(n,p) =Wp(i), (i = 1, 2, 3, 4, 5)

=

(
n− 1

n

)
,

(
n− 2

n

)
,

(
n− 2

n+ 1

)
,

(
n

n+ 1

)
,

(
n2 + n− 12

n2

)
,
(n− 1)(n− 2)

n2
,

(n− 1)(n− 2)

n(n+ 1)
,

(
n− 2

n+ 1

)2

and

α(n,p) = 1,

(
n

n+ 1

)
.

The MSE of T is given by

MSE(T )

= θ2
[
W 2

(n,p)

n

{
α2
(n,p)+n

(
α(n,p)−1

)2}
+
(
1−W(n,p)

)2
r2+2W(n,p)

(
1−W(n,p)

)(
α(n,p)−1

)
r

]
. (3.2)

Thus the MSEs of the estimators Tpi , (i = 1, 2, 3, 4, 5), T ∗
pj , (j = 2, 3, 4) and Tk, (k = 5, 6, 7, 8, 9, 10,

11, 12), can be obtained from (3.2) just by putting the suitable values of W(n,p) and α(n,p).

The optimum value of r that minimizes the MSE of T is given by

ropt =

(
α(n,p) − 1

)
W(n,p)

1−W(n,p)
(3.3)
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Table 3.1. MSE’s of various estimator of θ

Estimator MSE

T9

(
θ2

(n+ 1)2

){
9r2 − 6r

(
n− 2

n+ 1

)
+

(
n− 2

n+ 1

)2
}

T10

(
θ2

n4

){
(3n− 2)2r2 −

2r(n− 1)(n− 2)(3n− 2)

n+ 1
+

(n− 1)2(n− 2)2

n+ 1

}
T11

(
θ2

n2(n+ 1)2

){
(n− 1)2(n− 2)2

n+ 1
− 4(2n− 1)2r2 −

4r(n− 1)(n− 2)(2n− 1)

n+ 1

}
T12

(
θ2

(n+ 1)4

){
9(2n− 1)2r2 −

6r(n− 2)2(2n− 1)

n+ 1
+

(n− 2)4

n+ 1

}

Table 3.2. Optimum values of r and minimum MSE’s of various estimators of θ

Estimator Optimum value of r Minimum MSEs

T9
n− 2

3(n+ 1)
θ2
n(n− 2)2

(n+ 1)4

T10
(n− 1)(n− 2)

(3n− 2)(n+ 1)
θ2

(n− 1)2(n− 2)2

n3(n+ 1)2

T11
(n− 1)(n− 2)

2(2n− 1)(n+ 1)
θ2

(n− 1)2(n− 2)2

n(n+ 1)4

T12
(n− 2)2

3(2n− 1)(n+ 1)
θ2
n(n− 2)4

(n+ 1)6

and hence the minimum MSE of T is given by

minMSE(T ) =

(
θ2

n

)
W 2

(n,p)α
2
(n,p). (3.4)

The optimum value of ropt can be known as it is function of known quantities n and p. We have

from (3.2) and (3.4) that

MSE(T )−minMSE(T ) = θ2
⌊
r
(
1−W(n,p)

)
+
(
α(n,p) − 1

)
W(n,p)

⌋2
> 0. (3.5)

It follows that

minMSE(T ) < MSE(T ). (3.6)

MSE’s of different estimators of θ are provided in Table 3.1.

The ‘optimum’ values of r (for which the MSE’s of Tj are minimum) along with the minimum

MSE’s of Tj , (j = 9, 10, 11, 12) are provided in Table 3.2.

It can easily be shown that the minimum MSE’s of these estimators are always fewer than the

MMSE estimator T1 = (n/(n+ 1))x̄. It is further, noted that the optimum value of r can be easily

known as it is a function of sample size n only.

Conditions under which the estimators T9, T10, T11 and T12 have smaller mean square errors than

that of MMSE estimator T1 are presented in Table 3.3.

Now to have some tangible idea about the performances of these estimators we have computed the

relative efficiencies with respect to MMSE estimator T1 for different values of r and n and displayed

in Table 3.4(a) to Table 3.4(g). Table 3.5 presents the optimum values of r and relative efficiencies

of the various estimators of θ.
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Table 3.3. Conditions under which various estimators have smaller MSE’s than that of MMSE estimator T1

Estimator Condition

T9

{
3r2 − 2r

(
n− 2

n+ 1

)
−

(
2n− 1

n+ 1

)}
≤ 0

T10

{
r2 −

2(n− 1)(n− 2)r

(3n− 2)(n+ 1)
−

6n3 − 13n2 + 12n− 4

(n+ 1)(3n− 2)2

}
≤ 0

T11

{
r2 −

(n− 1)(n− 2)r

(2n− 1)(n+ 1)
−

2n3 − 3n2 + 3n− 1

(n+ 1)(2n− 1)2

}
≤ 0

T12

{
r2 −

3(n− 2)2r

(2n− 1)(n+ 1)
−

12n3 − 18n2 + 28n− 15

9(n+ 1)(2n− 1)2

}
≤ 0

It is observed from Table 3.4(a) to Table 3.4(g) that when |r| ≤ 0.3, the estimator T12 is better

than the estimators (T3, T4), (T5, T6, T7) and T8 suggested by Pandey (1983), Pandey and Srivastava

(1985) and Jani (1991) respectively for all n except for (r = −0.3, n = 3).

Further, it is noticed that the estimators T12 seem to be the most promising among all the estimators

for |r| ≤ 0.1 and all values of n. However, the performances of the estimators T9, T10 and T11 are

also appreciable in respect to Tj , (j = 3 to 8) when r range, between −0.3 to 0.3 and n ≤ 9.

Table 3.5 demonstrates that the estimator T12 is better than the rest of the estimators when r

attains its optimum value.

This study reveals that there is enough scope to choose simple estimators better than those con-

sidered by Pandey (1983), Pandey and Srivastava (1985) and Jani (1991) and MMSE estimator

T1.

Remark 3.1. Similar classes of estimators can be further defined for the data based on the failure

censored sample (Jani, 1991, Section 6, p.70).

Remark 3.2. Similarly, alternative classes of estimators to the class of estimators

θ̂(p) = θ0 + α(p)

(
θ̂ − θ0

)
for the scale parameter θ and hence alternative to the class of estimators

µ̂(p) = x(1) +

(
n− 1

n

)
θ̂(p)

of the mean µ of a 2-parameter exponential distribution

sf{x; θ, λ} = exp

{
−x− λ

θ

}
, x ≥ λ

can be derived and studied their properties, where λ, θ (location, scale) parameter, θ > 0,

θ̂ =
1

n− 1

n∑
i=1

(xi − x(1)).

x(1): min(xi, i = 1, 2, . . . , n): minimum order statistic,

α(p) =

√
n− 1− p

(n− 1)p
√
n− 1− 2p

where p is a real number such that p ∈ (−∞, (n− 1)/2). The class of estimators θ̂(p) and µ̂(p) are

due to Kourouklis (1994).
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Table 3.4. Relative efficiencies of various estimators of θ with respect to MMSE estimator T1 = (n/(n+1))x̄ at different values
of r

(a) r = −0.5

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.22 1.14 1.69 1.42 - 1.23 1.23 1.21 1.16 1.06

5 1.00 1.10 1.07 1.49 1.20 1.35 1.14 1.14 1.13 1.06 0.91

7 1.00 1.05 1.05 1.34 1.13 1.06 1.10 1.10 1.10 1.03 0.88

9 1.00 1.01 1.00 1.26 1.10 0.96 1.08 1.08 1.08 1.02 0.87

15 1.00 0.89 0.89 1.15 1.06 0.91 1.05 1.05 1.05 1.01 0.87

(b) r = −0.3

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.69 1.50 3.25 1.58 - 1.29 1.36 2.70 2.77 2.81

5 1.00 1.52 1.43 1.93 1.26 1.51 1.18 1.87 1.90 2.01 2.09

7 1.00 1.38 1.32 1.56 1.17 1.08 1.13 1.58 1.59 1.69 1.78

9 1.00 1.37 1.35 1.40 1.12 0.97 1.10 1.44 1.44 1.52 1.60

15 1.00 1.07 1.06 1.21 1.07 0.91 1.06 1.25 1.25 1.30 1.36

(c) r = −0.1

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.97 1.70 6.03 1.67 - 1.32 8.16 9.25 12.00 19.69

5 1.00 1.97 1.80 2.27 1.29 1.60 1.20 3.18 3.37 4.36 7.48

7 1.00 1.97 1.85 1.70 1.18 1.08 1.14 2.23 2.30 2.83 4.35

9 1.00 1.94 1.84 1.48 1.14 0.97 1.11 1.85 1.89 2.23 3.16

15 1.00 1.87 1.78 1.24 1.08 0.91 1.07 1.44 1.45 1.61 2.00

(d) r = 0.0

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.98 1.71 6.03 1.68 - 1.32 16.00 20.25 36.00 25.00

5 1.00 1.99 1.84 2.32 1.30 1.61 1.13 4.00 4.30 6.25 16.00

7 1.00 2.05 1.82 1.72 1.19 1.09 1.12 2.56 2.67 3.49 6.55

9 1.00 2.04 1.79 1.48 1.14 0.97 1.11 2.04 2.09 2.58 4.17

15 1.00 2.03 1.71 1.25 1.08 0.91 1.07 1.52 1.53 1.74 2.30

(e) r = 0.1

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.88 1.63 6.03 1.67 - 1.32 21.05 25.63 36.00 36.57

5 1.00 1.89 1.74 2.27 1.29 1.60 1.20 4.65 5.09 7.49 17.02

7 1.00 1.93 1.80 1.70 1.18 1.08 1.14 2.82 2.95 3.93 7.43

9 1.00 1.85 1.79 1.48 1.14 0.97 1.11 2.19 2.25 2.82 4.63

15 1.00 1.75 1.71 1.24 1.08 0.91 1.07 1.57 1.59 1.83 2.44

(f) r = 0.3

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.45 1.32 3.25 1.58 - 1.29 6.56 6.12 5.14 3.51

5 1.00 1.35 1.29 1.93 1.26 1.51 1.18 4.26 2.59 4.75 3.94

7 1.00 1.31 1.27 1.56 1.17 1.08 1.13 2.85 2.93 3.41 3.61

9 1.00 1.31 1.29 1.40 1.12 0.97 1.10 2.25 2.30 2.67 3.08

15 1.00 1.13 1.07 1.21 1.07 0.91 1.06 1.62 1.63 1.82 2.14

(g) r = 0.5

Sample Estimator

size n T1 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

3 1.00 1.10 1.07 1.69 1.42 - 1.23 2.29 2.08 1.71 1.21

5 1.00 1.03 1.02 1.49 1.20 1.35 1.14 2.67 2.59 2.17 3.94

7 1.00 0.93 0.93 1.34 1.13 1.06 1.10 2.29 2.28 2.13 1.52

9 1.00 0.80 0.86 1.26 1.10 0.96 1.08 1.98 1.98 1.97 1.56

15 1.00 0.80 0.80 1.15 1.06 0.91 1.05 1.54 1.55 1.60 1.49
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Table 3.5. Optimum values of r{= (θ0/θ − 1)} and relative efficiencies of various estimator of θ with respect to MMSE
estimator T1 = (n/(n + 1))x̄ for various values of n

Estimator
Sample size n

3 5 7 9 15

T9

{
topt
RE

0.083 0.1667 0.2083 0.2333 0.2708

21.33 4.80 2.93 2.27 1.62

T10

{
topt
RE

0.07143 0.10256 0.14423 0.16471 0.26454

27.00 5.10 3.05 2.33 1.63

T11

{
topt
RE

0.0500 0.1111 0.14423 0.16471 0.19612

48.00 7.50 3.98 2.87 1.86

T12

{
topt
RE

0.01667 0.05556 0.08013 0.09608 0.12141

341.39 19.20 7.49 4.63 2.45
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