DOI QR코드

DOI QR Code

A Study on Optimmal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems

2 MW급 대형 수평축 풍력발전시스템을 위한 필라멘트 와인딩 복합재 타워의 최적설계에 관한 연구

  • 임성진 (조선대학교 항공우주공학과) ;
  • 공창덕 (조선대학교 항공우주공학과) ;
  • 박현범 (호원대학교 국방기술학부)
  • Received : 2012.03.13
  • Accepted : 2012.04.20
  • Published : 2012.04.30

Abstract

In this study, a specific structural design procedure for 2 MW class glass/epoxy composite wind turbine system towers is newly proposed through load case study, trade-off study, optimal structural design and structural analysis. Optimal tower design is very important because its cost is about 20% of the wind turbine system's cost. In the structural design of the tower, three kinds of loads such as wind load, blades, nacelle and tower weight and blade aerodynamic drag load should be considered. Initial structural design is carried out using the netting rule and the rule of mixture. Then the structural safety and stability are confirmed using a commercial finite element code, MSC NASTRAN/PATRAN. The finally proposed tower configuration meets the tower design requirements.

본 연구에서 유리섬유/에폭시 복합재를 이용한 2 MW 풍력터빈 시스템 타워에 대한 특정 구조설계 절차가 하중 분석, 단계적 설계 변경 통한 최적 구조설계 및 해석을 통해 새로이 제안되었다. 최적 타워 설계는 풍력터빈 시스템 단가의 20% 이상을 차지하는 중요한 구조물 이다. 타워 구조 설계 시, 풍하중, 블레이드, 나셀, 타워 등에 의한 자중, 블레이드 공기 역학적 항력 등의 3가지 하중이 고려된다. 초기의 복합재 구조설계는 단순 설계기법과 혼합설계기법을 병용 하였다. 상용 유한요소 해석 프로그램인 MSC.NASTRAN/PATRAN을 통하여 구조적 안전성을 검토 하였다. 최종 제안한 타워 형상은 모든 설계 요구조건을 충족함을 확인하였다.

Keywords

References

  1. Kong, C., Bang, J., Sugiyamab, Y., "Structural investigation of composite wind turbine blade considering various load case and fatigue life," Journal of Energy, Vol. 30, 2005, pp. 2101-2114. https://doi.org/10.1016/j.energy.2004.08.016
  2. Desire LE GOURIERES, "Wind power plants theory and design," PERGAMON PRESS, UK, 1998.
  3. Tongguang Wang., et al., "A high resolution tower shadow model for downwind wind turbine," Journal of Wind Engineering and Industrial Aerodynamics 89, 2001, pp. 873-892. https://doi.org/10.1016/S0167-6105(01)00072-1
  4. Murtagh, P.J., et al,. "Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading," Engineering Structures 27, 2005, pp. 1209-1219 https://doi.org/10.1016/j.engstruct.2005.03.004
  5. Dimos, J., Polyzois., et al., "Static and dunamic characteristics of multi-cell jointed GFRP wind turbine towers," Composite Structures, 2009, pp. 34-42
  6. Jane, E.Lundberg, Theodore, V.Galambos, "Load and resistance factor design of composite columns," Structural Safety, Vol. 18, No. 2/3, pp. 169-177.
  7. Uys., P.E. et al., "Optimisation of a steel tower for a wind turbine structure," Engineering Structure 29, 2007, pp. 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011
  8. Gutierrez., E., et al., "A wind turbine tower design based on the use of fibre-reinfirced composites," Europen Laboratory for Structural Assessment(ELSA), 2003.
  9. Spera., D.A, "Wind turbine technology," ASME Press, 1994, pp.139-194
  10. Hani, M.Negm., et al., "Structural design optimization of wind turbine towers," Computers and Structures 74, 2000, pp. 649-666. https://doi.org/10.1016/S0045-7949(99)00079-6

Cited by

  1. Carbon Nanotube Wind Turbine Blades: How Far Are We Today from Laboratory Tests to Industrial Implementation? vol.1, pp.12, 2012, https://doi.org/10.1021/acsanm.8b01824